Programming Language EuLisp
Version 0.991

WORKING DRAFT

Programming Language EuLisp:2010(E) Version 0.991

ii

Version 0.991 Programming Language EuLisp:2010(E)

Contents Page
1 Language Structure oL e e e e e e 3
2 SCOPE v o o o e e e e e e e 3
3 Normative References e e 3
4 Conformance Definitions 0 L L e e e 4
5 Error Definitions o . L L e e e e e e e 4
6 Compliance o L e e e e e e e e e 4
7 Conventions L oo e e e e e e e e 5
7.1 Layout and Typography e 5
7.2 Naming o o e 6

8 Definitions o . L e e e 7
9 Lexical Syntax e 9
9.1 Character Set o o e e e e e 9
9.2 Whitespace and Comments oL oL e e e e e e e e e 9
9.3 Identifiers L e e 10
9.4 Objects . . . o o 10
9.5 Boolean e e 10

10 Modules o e e e e 11
10.1 Module Definition oL o e e e 11
10.2 Directives o o e e e e e e e 12
10.2.1 export Directive. L 12

10.2.2 dimport Directive. L 12

10.2.3 expose Directive. L 13

10.2.4 syntax Directive. 13

10.3 Definitions and Expressions Lo e e e e e e e e e 13
10.4 Special Forms L 0L e e e e 14
10.5 Module Processing L 14

11 ODJECES . . v o o e e e e e 15
11.1 System Defined Classes o i i i i e e e e e e e e e e e 15
11.2 Single Inheritance L e e e e e e e e e e e e e 15
11.3 Defining Classes o vt e e e e e e 16
11.4 Defining Generic Functions and Methods e 17
11.5 Specializing Methods L e e e 18
11.6 Method Lookup and Generic Dispatch 0. 0 0 e 19
11.7 Creating and Initializing Objects o o o e e e e 19
11.8 Accessing Slots o L L e 20
11.9 Other Abstract Classes o o it it e e s e e e e e 20

12 Level-0 Defining, Special and Function-call Forms 21
12.1 Simple EXpressionso e e e e 21
12.2 Functions: creation, definition and application oL Lo 21
12.3 Destructive Operations e e e e e e e 23
12.4 Conditional Expressions oL L e e e e e e e 24
12.5 Variable Binding and Sequences e e e e e e e e 25
12.6 Quasiquotation EXpressions o e e e e e e e e e e e e e 27
12.7 Summary of Level-0 Defining, Special and Function-call Forms 28
12.7.1 Syntax of Level-O modules o e 29

12.7.2 Syntax of Level-0 defining forms L 29

12.7.3 Syntax of Level-0 special forms L e 30

12.7.4 Syntax of Level-0 function calls o 31

12.8 Conditions oL e e 31

13 Condition Classes o o o v i i e e e e e e e 31
14 Condition Signalling and Handling 0 0 e e 33
15 CONCUITENCY v v it i it e i e e e e e e e e e 35
15.1 Threads o o 0 e e e e e e 36
15.2 Locks . . o o e 38

16 Level-0 Module Library o 0 e e e e 38

iii

Programming Language EuLisp:2010(E) Version 0.991

16.1 Characters o . 0 o i e e e e e e e e e e 38
16.2 Collections o o o i e e e e e 40
16.3 CompariSOn o L oL e e e e e e e e e e e e e e e e 46
16.4 Conversion ot e e e e e e e e e e e e 48
16.5 Copying o o i e e 49
16.6 Double Precision Floats o e e 50
16.7 Floating Point Numbers 0 e e 51
16.8 Formatted-IO oL e e e 52
16.9 Fixed Precision Integers L 54
16.10 Integers o e e e e e e 55
16.11 Keywords o L 56
16.12 Lists . . . o o o o e e e e e e 58
16.13 Elementary Functions L e e 60
16.14 Numbers L e e e e e e 62
16,15 Streams o o e e e e e e e e e e e e 65
16.15.1 Stream classes oL e e e e e e e 65
16.15.2 Stream Operators v v vt e e e e e e e e e e e e e e e e 66
16.15.3 Stream obJects oL e e e e 67
16.15.4 Buffer management Lo e 67
16.15.5 Reading from streamso e e e e e 68
16.15.6 Writing to streams oL 69
16.15.7 Additional functionso e e e e 70
16.15.8 Convenience forms e e e e e e e e e e e e e 71

16.16 Strings. o o i e e e e e e 72
16.17 Symbols oL e e 74
16.18 Tables L e e e e e e 75
16.19 Vectors o e e e e e e 76
16.20 Syntax of Level-0 objects oL e e 7

17 Programming Language Eulisp, Level-1 0 0 0 e 78
171 Modules o e e e 78
17.2 Classes and Objects o 0 i e e 78
17.3 Generic Functions L e e e e e 79
17.4 Methods o L e e e e e e 80
17.5 Object Introspection L e e 81
17.6 Class Introspection oL o e e 81
17.7 Slot Introspection L e e e e e 82
17.8 Generic Function Introspection L L e e e 83
17.9 Method Introspection L e e e e e 84
17.10 Class Initialization 0L L e e e e e 84
17.11 Slot Description Initialization L e e e e 85
17.12 Generic Function Initialization 0 Lo 86
17.13 Method Initialization L e e e e e e e e e 86
17.14 Inheritance Protocol L e e e e 86
17.15 Slot Access Protocol e e e e e 90
17.16 Method Lookup and Generic Dispatch o o e 93
17.17 Low Level Allocation Primitives e e e e e e e e e e 94
17.18 Dynamic Binding Lo 95
17.19 Exit Extensions L Lo e e e e e e 96
17.20 Syntax of Level-1 objects L e 97
17.20.1 Syntax of Level-1 modules o e e 97
17.20.2 Syntax of Level-1 defining forms 97
17.20.3 Syntax of Level-1 special forms e e e 97
Bibliography o L e e 98
Module Index L e e e e e e 99
Class Index o 0 e e s 100
Special Forms Index o L L e e e e e 101
Function Index L oL e e e e 102
Generic Function Index 0 0 0L oL e e 103
Condition Index o L e e e 104
Constant Index« . oL e e e 105
Index . o o e e e e 106

iv

Version 0.991

Figures
Example 1 module directiveso 13
Example 1 — module using expose 13
Example 1 using let/cc 25
Example 2 — Interaction of unwind-protect with non-

local exits oL 27
Example 1 — handler actions 34
Example 1 Examples of string literals 72
Tables
Table 1 — Level-0 class hierarchy 15
Table 2 — Condition class hierarchy 32
Table 3 — Character digrams 39
Table 4 — Level-0 number class hierarchy 62
Table 5 — Level-1 metaclass hierarchy 81
Table 6 — Level-1 class hierarchy 82
Table 7 — Initialization Call Structure 85

Programming Language EuLisp:2010(E)

Programming Language EuLisp:2010(E) Version 0.991

Foreword

The EULISP group first met in September 1985 at IRCAM in Paris to discuss the idea of a new dialect of Lisp, which should be
less constrained by the past than Common Lisp and less minimalist than Scheme. Subsequent meetings formulated the view
of EULISP that was presented at the 1986 ACM Conference on Lisp and Functional Programming held at MIT, Cambridge,
Massachusetts [15] and at the European Conference on Artificial Intelligence (ECAI-86) held in Brighton, Sussex [22]. Since
then, progress has not been steady, but happening as various people had sufficient time and energy to develop part of the
language. Consequently, although the vision of the language has in the most part been shared over this period, only certain
parts were turned into physical descriptions and implementations. For a nine month period starting in January 1989, through
the support of INRIA, it became possible to start writing the EULISP definition. Since then, affairs have returned to their
previous state, but with the evolution of the implementations of EULISP and the background of the foundations laid by the
INRIA-supported work, there is convergence to a consistent and practical definition.

Work on this version started in 2010 from the material archived by Julian Padget in 1993 with the aim of finalising an EU
L1SP-1.0 definition as close to the plans of the original contributors as is possible to ascertain from the remaining documents.
If there is interest from any of the original contributors or others parties to participate in the process of finalising EULISP-1.0
your input would be greatly appreciated.

The acknowledgments for this definition fall into three categories: intellectual, personal, and financial.

The ancestors of EULISP (in alphabetical order) are Common Lisp [20], InterLISP [23], LE-LISP [4], LISP/VM [1], Scheme [6],
and T [17] [18]. Thus, the authors of this report are pleased to acknowledge both the authors of the manuals and definitions of
the above languages and the many who have dissected and extended those languages in individual papers. The various papers
on Standard ML [14] and the draft report on Haskell [10] have also provided much useful input.

The writing of this report has, at various stages, been supported by Bull S.A.; Gesellschaft fiir Mathematik und Datenverar-
beitung (GMD, Sankt Augustin), Ecole Polytechnique (LIX), ILOG S.A., Institut National de Recherche en Informatique et en
Automatique (INRIA), University of Bath, and Université Paris VI (LITP). The authors gratefully acknowledge this support.
Many people from European Community countries have attended and contributed to EULISP meetings since they started, and
the authors would like to thank all those who have helped in the development of the language.

In the beginning, the work of the EULISP group was supported by the institutions or companies where the participants worked,
but in 1987 DG XIII (Information technology directorate) of the Commission of the European Communities agreed to support
the continuation of the working group by funding meetings and providing places to meet. It can honestly be said that without
this support EULISP would not have reached its present state. In addition, the EULISP group is grateful for the support of:

British Council in France (Alliance programme), British Council in Spain (Acciones Integradas programme), British Council
in Germany (Academic Research Collaboration programme), British Standards Institute, Deutscher Akademischer Austausch-
dienst (DAAD), Departament de Llenguatges i Sistemes Informatics (LSI, Universitat Politecnica de Catalunya), Fraunhofer
Gesellschaft Institut fiir Software und Systemtechnik, Gesellschaft fiir Mathematik und Datenverarbeitung (GMD), ILOG S.A.,
Insiders GmbH, Institut National de Recherche en Informatique et en Automatique (INRIA), Institut de Recherche et de Coordi-
nation Acoustique Musique (IRCAM), Ministerio de Educacion y Ciencia (MEC), Rank Xerox France, Science and Engineering
Research Council (UK), Siemens AG, University of Bath, University of Technology, Delft, University of Edinburgh, Universitét
Erlangen and Université Paris VI (LITP).

The following people (in alphabetical order) have contributed in various ways to the evolution of the language: Giuseppe Attardi,
Javier Béjar, Neil Berrington, Russell Bradford, Harry Bretthauer, Peter Broadbery, Christopher Burdorf, Jérome Chailloux,
Odile Chenetier, Thomas Christaller, Jeff Dalton, Klaus Déafller, Harley Davis, David DeRoure, John Fitch, Richard Gabriel,
Brigitte Glas, Nicolas Graube, Dieter Kolb, Jiirgen Kopp, Antonio Moreno, Eugen Neidl, Greg Nuyens, Pierre Parquier, Keith
Playford, Willem van der Poel, Christian Queinnec, Nitsan Seniak, Enric Sesa, Herbert Stoyan, and Richard Tobin.

The editors of the EULISP definition wish particularly to acknowledge the work of Harley Davis on the first versions of the
description of the object system. The second version was largely the work of Harry Bretthauer, with the assistance of Jiirgen
Kopp, Harley Davis and Keith Playford.

Julian Padget (jap@maths.bath.ac.uk)
School of Mathematical Sciences
University of Bath

Bath, Avon, BA2 7TAY, UK

Harry Bretthauer (harry.bretthauer@gmd.de) GMD mbH
Postfach 1316

53737 Sankt Augustin

Germany

original editors.

vi

WORKING DRAFT Programming Language EuLisp:2010(E)

Programming Language EuLisp —
Version 0.991

Programming Language EuLisp:2010(E) Version 0.991

Introduction

EULISP is a dialect of Lisp and as such owes much to the great body of work that has been done on language design in the name
of Lisp over the last forty years. The distinguishing features of EULISP are (i) the integration of the classical Lisp type system
and the object system into a single class hierarchy (ii) the complementary abstraction facilities provided by the class and the
module mechanism (iii) support for concurrent execution.

Here is a brief summary of the main features of the language.

— Classes are first-class objects. The class structure integrates the primitive classes describing fundamental datatypes, the
predefined classes and user-defined classes.

— Modules together with classes are the building blocks of both the EULISP language and of applications written in EULISP.
The module system exists to limit access to objects by name. That is, modules allow for hidden definitions. Each module
defines a fresh, empty, lexical environment.

— Multiple control threads can be created in EULISP and the concurrency model has been designed to allow consistency across
a wide range of architectures. Access to shared data can be controlled via locks (semaphores). Event-based programming
is supported through a generic waiting function.

— Both functions and continuations are first-class in EULISP, but the latter are not as general as in Scheme because they can
only be used in the dynamic extent of their creation. That implies they can only be used once.

— A condition mechanism which is fully integrated with both classes and threads, allows for the definition of generic handlers
and supports both propagation of conditions and continuable handling.

— Dynamically scoped bindings can be created in EULISP, but their use is restricted, as in Scheme. EULISP enforces a strong
distinction between lexical bindings and dynamic bindings by requiring the manipulation of the latter via special forms.

EULISP does not claim any particular Lisp dialect as its closest relative, although parts of it were influenced by features found
in Common Lisp, InterLISP, LE-LISP, LISP/VM, Scheme, and T. EULISP both introduces new ideas and takes from these
Lisps. It also extends or simplifies their ideas as seen fit. But this is not the place for a detailed language comparison. That
can be drawn from the rest of this text.

EULISP breaks with LISP tradition in describing all its types (in fact, classes) in terms of an object system. This is called The EU
LiSP Object System, or TELOS. TELOS incorporates elements of the Common Lisp Object System (CLOS) [3], ObjVLisp [7],
Oaklisp [12], MicroCeyx [5], and MCS [24].

Version 0.991

1 Language Structure
The EULISP definition comprises the following items:

Level-0: comprises all the level-0 classes, functions, defin-
ing forms and special forms , which is this text minus §17.
The object system can be extended by user-defined struc-
ture classes, and generic functions.

Level-1: extends level-0 with the classes, functions, defin-
ing forms and special forms defined in §17. The object
system can be extended by user-defined classes and meta-
classes. The implementation of level-1 is not necessarily
written or writable as a conforming level-0 program.

A level-0 function is a (generic) function defined in this text
to be part of a conforming processor for level-0. A function
defined in terms of level-0 operations is an example of a level-0
application.

Much of the functionality of EULISP is defined in terms of
modules . These modules might be available (and used) at
any level, but certain modules are required at a given level.
Whenever a module depends on the operations available at a
given level, that dependency will be specified.

EULISP level-0 is provided by the module 1level-0. This module
imports and re-exports the modules specified in table 1.

Modules comprising eulispO:

Module Section(s)
character 16.1
collection 16.2
compare 16.3
condition 12.8
convert 16.4
copy 16.5
double 16.6
fpi 16.9
formatted-io 16.8
function 12.2
keyword 16.11
list 16.12
lock 15.2
mathlib 77
number 16.14
telosO 11
stream 16.15
string 16.16
symbol 16.17
table 16.18
thread 15.1
vector 16.19

This definition is organized in three parts:

Sections 9—12: describes the core of level-0 of EULISP,
covering modules, simple classes, objects and generic func-
tions, threads, conditions, control forms and events. These
sections contain the information about EULISP that char-
acterizes the language.

Section 16: describes the classes required at level-0 and
the operations defined on instances of those classes. The
section is organized by module in alphabetical order.
These sections contain information about the predefined
classes in EULISP that are necessary to make the language
usable, but is not central to an appreciation of the lan-
guage.

Programming Language EuLisp:2010(E)

Section 17: describes the reflective aspects of the object
system and how to program the metaobject protocol and
some additional control forms.

Prior to these, sections 2-8 define the scope of the text, cite nor-
mative references, conformance definitions, error definitions,
typographical and layout conventions and terminology defini-
tions used in this text.

2 Scope

This text specifies the syntax and semantics of the computer
programming language EULISP by defining the requirements
for a conforming EULISP processor and a conforming EULISP
program (the textual representation of data and algorithms).
This text does not specify:

a) The size or complexity of an EULISP program that will
exceed the capacity of any specific configuration or pro-
cessor, nor the actions to be taken when those limits are
exceeded.

b) The minimal requirements of a configuration that is capa-
ble of supporting an implementation of a EULISP processor.

¢) The method of preparation of a EULISP program for exe-
cution or the method of activation of this EULISP program
once prepared.

d) The method of reporting errors, warnings or exceptions to
the client of a EULISP processor.

e) The typographical representation of a EULISP program for
human reading.

f) The means to map module names to the filing system or
other object storage system attached to the processor.

To clarify certain instances of the use of English in this text
the following definitions are provided:

must: a verbal form used to introduce a required property.
All conforming processors must satisfy the property.

should: A verbal form used to introduce a strongly rec-
ommended property. Implementors of processors are urged
(but not required) to satisfy the property.

3 Normative References

The following standards contain provisions, which through ref-
erences in this text constitute provisions of this definition. At
the time of writing, the editions indicated were valid. All stan-
dards are subject to revision and parties making use of this
definition are encouraged to apply the most recent edition of
the standard listed below.

[ISO 646 : 1991] Information processing — ISO 7-bit coded
character set for information interchange, 1991.

[ISO 2382] Data processing — vocabulary.

[ISO TR 10034 : 1990] Information technology — Guidelines
for the preparation of conformity clauses in programming lan-
guage standards.

[ISO TR 10176 : 1991] Information technology — Guidelines
for the preparation of programming language standards. Note:
this is currently a draft technical report.

Programming Language EuLisp:2010(E)

[ISO/IEC 9899:1999] Programming Languages — C.

4 Conformance Definitions

The following terms are general in that they could be applied to
the definition of any programming language. They are derived
from ISO/IEC TR 10034: 1990.

4.1 configuration
Host and target computers, any operating systems(s) and soft-
ware (run-time system) used to operate a language processor.

4.2 conformity clause

Statement that is not part of the language definition but that
specifies requirements for compliance with the language stan-
dard.

4.3 conforming program

Program which is written in the language defined by the lan-
guage standard and which obeys all the conformity clauses for
programs in the language standard.

4.4 conforming processor

Processor which processes conforming programs and program
units and which obeys all the conformity clauses for processors
in the language standard.

4.5 error
Incorrect program construct or incorrect functioning of a pro-
gram as defined by the language standard.

4.6 extension

Facility in the processor that is not specified in the language
standard but that does not cause any ambiguity or contradic-
tion when added to the language standard.

4.7 implementation-defined
Specific to the processor, but required by the language standard
to be defined and documented by the implementer.

4.8 processor
Compiler, translator or interpreter working in combination
with a configuration.

5 Error Definitions

Errors in the language described in this definition fall into one
of the following three classes:

5.1 static error

An error which is detected during the execution of a EULISP
program or which is a violation of the defined behaviour of EU
LISP. Static errors have two classifications:

a) Where a conforming processor is required to detect the
erroneous situation or behaviour and report it. This is
signified by the phrase an error is signalled. The condi-
tion class to be signalled is specified. Signalling an error
consists of identifying the condition class related to the
error and allocating an instance of it. This instance is ini-
tialized with information dependent on the condition class.
A conforming EULISP program can rely on the fact that
this condition will be signalled.

Where a conforming processor might or might not detect
and report upon the error. This is signified by the phrase
...1s an error. A processor should provide a mode where
such errors are detected and reported where possible.

Version 0.991

If the result of preparation is a runnable program, then that
program must signal any static error.

5.2 environmental error

An error which is detected by the configuration supporting the
EULISP processor. The processor must signal the corresponding
static error which is identified and handled as described above.

5.3 violation

An error which is detected during the preparation of a EULISP
program for execution, such as a violation of the syntax or
static semantics of EULISP in the program under preparation.
A conforming processor is required to issue a diagnostic if a
violation is detected.

All errors specified in this definition are static unless explicitly
stated otherwise.

6 Compliance

An EULISP processor can conform at either of the two levels
defined under Language Structure in the Introduction. Thus a
level-0 conforming processor must support all the basic expres-
sions, classes and class operations defined at level-0. A level-1
conforming processor must support all the basic expressions,
classes, class operations and modules defined at level-0 and at
level-1.

The following two statements govern the conformance of a pro-
cessor at a given level.

a) A conforming processor must correctly process all pro-
grams conforming both to the standard at the specified
level and the implementation-defined features of the pro-
cessor.

A conforming processor should offer a facility to report the
use of an extension which is statically determinable solely
from inspection of a program, without execution. (It is
also considered desirable that a facility to report the use
of an extension which is only determinable dynamically be
offered.)

A level-0 conforming program is one which observes the syn-
tax and semantics defined for level-0. A level-0 conforming
program might not conform at level-1. A strictly-conforming
level-0 program is one that also conforms at level-1. A level-1
conforming program observes the syntax and semantics defined
for level-1.

In addition, a conforming program at any level must not use
any extensions implemented by a language processor, but it
can rely on implementation-defined features.

The documentation of a conforming processor must include:

a) A list of all the implementation-defined definitions or val-
ues.

b) A list of all the features of the language standard which

are dependent on the processor and not implemented by

this processor due to non-support of a particular facility,

where such non-support is permitted by the standard.

c) A list of all the features of the language implemented by
this processor which are extensions to the standard lan-
guage.

d) A statement of conformity, giving the complete reference
of the language standard with which conformity is claimed,

Version 0.991

and, if appropriate, the level of the language supported by
this processor.

7 Conventions

This section defines the conventions employed in this text, how
definitions will be laid out, the typefaces to be used, the meta-
language used in descriptions and the naming conventions. A
later section (8) contains definitions of the terms used in this
text.

A standard function denotes an immutable top-lexical binding
of the defined name. All the definitions in this text are bindings
in some module except for the special form operators, which
have no definition anywhere. All bindings and all the special
form operators can be renamed.

NOTE 1 A description making mention of “an x” where “x” is the
name a class usually means “an instance of <x>”.

Frequently, a class-descriptive name will be used in the ar-
gument list of a function description to indicate a restriction
on the domain to which that argument belongs. In the case
of a function, it is an error to call it with a value outside the
specified domain. A generic function can be defined with a par-
ticular domain and/or range. In this case, any new methods
must respect the domain and/or range of the generic function
to which they are to be attached. The use of a class-descriptive
name in the context of a generic function definition defines the
intention of the definition, and is not necessarily a policed re-
striction.

The result-class of an operation, except in one case, refers to
a primitive or a defined class described in this definition. The
exception is for predicates. Predicates are defined to return ei-
ther the empty list—written ()—representing the boolean value
false, or any value other than (), representing true.

7.1 Layout and Typography

Both layout and fonts are used to help in the description of
EULISP. A language element is defined as an entry with its
name as the heading of a clause, coupled with its classifica-
tion. The syntax notation used is based on that described in
[| with modifications to support the spec-
ification of a return type and to improve clarity. Syntactic
categories (non-terminals) are indicated by étalic type, and lit-
eral words and characters (terminals) by constant width type.
A colon (:) following a non-terminal introduces its definition.
Alternative definitions are listed on separate lines, except when
prefaced by the words “one of”. An optional symbol is indi-
cated by the subscript “opt”, a list of zero or more occurrences
of a symbol are indicated by the superscript “*’, and a list
of one or more occurrences of a symbol are indicated by the
superscript “+”. Examples of several kinds of entry are now
given. Some subsections of entries are optional and are only
given where it is felt necessary.

7.1.1 a-special-form special operator

7.1.1.1 Syntax

a-special-form-form: —result-class

(a-special-form form-1 ... form-nep:)

Programming Language EuLisp:2010(E)

Arguments

form-1: description of structure and roéle of form-1.

form-nep: : description of structure and roéle of op-
tional argument form-nopt.

Result
A description of the result and, possibly, its result-class.

Remarks

Any additional information defining the behaviour of
a-special-form or the syntax category a-special-form-form.

Examples

Some examples of use of the special form and the behaviour
that should result.

See also
Cross references to related entries.

7.1.2 a-function function

7.1.2.1

Signature

(a-function argument-1 ...
— result-class

argument-nopt)

Arguments

argument-1: information about the class or classes of
argument-1.

argument-nop: : information about the class or classes
of the optional argument argument-n.

Result
A description of the result and, possibly, its result-class.

Remarks

Any additional information about the actions of a-function.

Examples

Some examples of calling the function with certain arguments
and the result that should be returned.

See also
Cross references to related entries.

7.1.3 a-generic generic function

Generic Arguments

argument-a <class-a>: means that argument-a of
a-generic must be an instance of <class-a>
and that argument-a is one of the arguments
on which a-generic specializes. Furthermore,
each method defined on a-generic may special-
ize only on a subclass of <class-a> for argument-
a.

Programming Language EuLisp:2010(E)

argument-n: means that (i) argument-n is an in-
stance of <object>, i.e. it is unconstrained, (ii)
a-generic does not specialize on argument-n,
(iii) no method on a-generic can specialize on
argument-n.

Result
A description of the result and, possibly, its class.

Remarks

Any additional information about the actions of a-generic.
This can take two forms depending on the function. This will
probably be in general terms, since the actual behaviour will
be determined by the methods.

See also
Cross references to related entries.

7.1.4 a-generic <class-a> method

A method on a-generic with the following specialized argu-
g g g
ments.)

Specialized Arguments
argument-a <class-a>: means that argument-a of
the method must be an instance of <class-a>.
Of course, this argument must be one which was
defined in a-generic as being open to special-
ization and <class-a> must be a subclass of the
class.

means that (i) argument-n is an in-
it is unconstrained,
not specialize on

argument-n:
stance of <object>, i.e.
because a-generic does
argument-n.

Result
A description of the result and, possibly, its class.

Remarks

Any additional information about the actions of this method
attached to a-generic.

See also
Cross references to related entries.

7.1.5 <a-condition> <condition> condition

Initialization Options

keyword-a value-a: means that an instance of
<a-condition> has a slot called keyword-a which
should be initialized to value-a, where value-a is
often the name of a class, indicating that value-a
should be an instance of that class and a descrip-
tion of the information that value-a is supposed
to provide about the exceptional situation that
has arisen.

keyword-n value-n: As for keyword-a.

Version 0.991

Remarks

Any additional information about the circumstances in which
the condition will be signalled.

7.1.6 <a-class> <class> class

Initialization Options
keyword-a value-a: means that <a-class> has an
keyword whose name is keyword-a and the de-
scription will usually say of what class (or classes)
value-a should be an instance. This keyword is
required.

[keyword-n wvalue-n] : The enclosing square brackets
denote that this keyword is optional. Other-
wise the interpretation of the definition is as for
keyword-a.

Remarks
A description of the réle of <a-class>.

7.1.7 a-constant <a-class> constant

Remarks

A description of the constant of type <a-class>.
7.2 Naming

Naming conventions are applied in the descriptions of primitive
and defined classes as well as in the choice of other function
names. Here is a list of the conventions and some examples of
their use.

7.1 ‘“<name>” wrapping: By convention, classes have

names which begin with “<” and end with “>”.

7.2 “binary” prefix: The two argument version of a n-ary
argument function. For example binary+ is the two argument
(generic) function corresponding to the n-ary argument + func-
tion.

7.3 “-class” suffix: The name of a metaclass of a set of
related classes. For example, <function-class>, which is the
class of <simple-function>, <generic-function> and any of
their subclasses. The exception is <class> itself which is the
default metaclass. The prefix should describe the general do-
main of the classes in question, but not necessarily any partic-
ular class in the set.

7.4 “generic-” prefix: The generic version of the function
named by the stem.

Function and class names made up
for example:

7.5 hyphenation:
of more than one word are hyphenated,
compute-specialized-slot-class.

7.6 “make-” prefix: For most primitive or defined classes
there is constructor function, which is usually named
make-class-name.

Version 0.991

7.7 1 guffix: A destructive function is named by a “!”

suffix, for example the destructive version of reverse is named
reverse!.

7.8 “?” suffix: A predicate function is named by a “?”

suffix, for example cons?.

8 Definitions

This set of definitions, which are be used throughout this doc-
ument, is self-consistent but might not agree with notions ac-
cepted in other language definitions. The terms are defined in
alphabetical rather than dependency order and where a defini-
tion uses a term defined elsewhere in this section it is written
in italics. Names in courier font refer to entities defined in
the language.

8.1 abstract class
A Class that by definition has no direct instances.

8.2 applicable method

A method is applicable for a particular set of arguments if each
element in its domain is a superclass of the class of the corre-
sponding argument.

8.3 binding
A location containing a value.

8.4 class

A class is an object which describes the structure and behaviour
of a set of objects which are its instances. A class object
contains inheritance information and a set of slot descriptions
which define the structure of its instances. A class object is an
instance of a metaclass. All classes in EULISP are subclasses of
<object>, and all instances of <class> are classes.

8.5 class precedence list

Each class has a linearised list of all its super-classes, direct
and indirect, beginning with the class itself and ending with
the root of the inheritance graph, the class <object>. This list
determines the specificity of slot and method inheritance. A
class’s class precedence list may be accessed through the func-
tion class-precedence-list. The rules used to compute this
list are determined by the class of the class through methods
of the generic function compute-class-precedence-list.

8.6 class option

A keyword and its associated value applying to a class ap-
pearing in a class definition form, for example: the predicate
keyword and its value, which defines a predicate function for
the class being defined.

8.7 closure

A first-class function with free variables that are bound in the
lezical environment. Such a function is said to be “closed over”
its free variables. Example: the function returned by the ex-
pression (let ((x 1)) #’(lambda () x)) is a closure since it
closes over the free variable x.

8.8 congruent

A constraint on the form of the lambda-list of a method, which
requires it to have the same number of elements as the generic
function to which it is to be attached.

8.9 continuation

A continuation is a function of one parameter which represents
the rest of the program. For every point in a program there is
the remainder of the program coming after that point; this can
be viewed as a function of one argument awaiting the result

Programming Language EuLisp:2010(E)

of that point. The current continuation is the continuation
that would be derived from the current point in a program’s
execution, see let/cc.

8.10 converter function

The generic function associated with a class (the target) that
is used to project an instance of another class (the source) to
an instance of the target.

8.11 defining form
Any form or syntar expression expanding into a form whose
operator is a defining operator.

8.12 defining operator
One of defclass, defcondition, defconstant, defgeneric,
deflocal, defsyntax, defun, or defglobal.

8.13 direct instance
A direct instance of a class class1 is any object whose most
specific class is class; .

8.14 direct subclass

A classy is a direct subclass of classs if class; is a subclass of
classz, classy is not identical to classz, and there is no other
classs which is a superclass of classy and a subclass of classa.

8.15 direct superclass
A direct superclass of a class class; is any class for which classi
is a direct subclass.

8.16 dynamic environment
The inner and top dynamic environment, taken together, are
referred to as the dynamic environment.

8.17 dynamic extent

A lifetime constraint, such that the entity is created on control
entering an expression and destroyed when control exits the
expression. Thus the entity only exists for the time between
control entering and exiting the expression.

8.18 dynamic scope
An access constraint, such that the scope of the entity is limited
to the dynamic extent of the expression that created the entity.

8.19 extent
That lifetime for which an entity exists. Extent is constrained
to be either dynamic or indefinite.

8.20 first-class
First-class entities are those which can be passed as parameters,
returned from functions, or assigned into a variables.

8.21 function
A function is either a continuation, a simple function or a
generic function.

8.22 generic function

Generic functions are functions for which the method executed
depends on the class of its arguments. A generic function is
defined in terms of methods which describe the action of the
generic function for a specific set of argument classes called the
method’s domain.

8.23 identifier
An identifier is the syntactic representation of a variable.

8.24 indefinite extent
A lifetime constraint, such that the entity exists for ever. In

practice, this means for as long as the entity is accessible.

8.25 indirect instance

Programming Language EuLisp:2010(E)

An indirect instance of a class class; is any object whose class
is an indirect subclass of class;.

8.26 indirect subclass

A class; 1s an indirect subclass of classs if classy is a subclass
of classa, class: is not identical to classz, and there is at least
one other classs which is a superclass of classi and a subclass
of classs.

8.27 inheritance graph

A directed labelled acyclic graph whose nodes are classes and
whose edges are defined by the direct subclass relations be-
tween the nodes. This graph has a distinguished root, the
class <object>, which is a superclass of every class.

8.28 inherited slot description

A slot description is inherited for a class; if the slot descrip-
tion is defined for another classs which is a direct or indirect
superclass of class.

8.29 keyword

A keyword used in an initlist to mark the value of some slot or
additional information. Used in conjunction with make and the
other object initialization functions to initialize the object. An
keyword may be declared for a slot in a class definition form
using the keyword slot-option or the keywords class-option.

8.30 default

A form which is evaluated to produce a default initial slot value.
Defaults are closed in their lezical environments and the re-
sulting closure is called a default-function. A default may be
declared for a slot in a class definition form using the default
slot-option.

8.31 default-function

A function of no arguments whose result is used as the default
value of a slot. default-functions capture the lexical environ-
ment of a default declaration in a class definition form.

8.32 initlist

A list of alternating keywords and values which describes some
not-yet instantiated object. Generally the keywords corre-
spond to the keywords of some class.

8.33 inner dynamic
Inner dynamic bindings are created by dynamic-1let, referenced
by dynamic and modified by dynamic-setq. Inner dynamic
bindings extend—and can shadow—the dynamically enclosing
dynamic environment.

8.34 inner lexical

Inner lexical bindings are created by lambda and let/cc, refer-
enced by variables and modified by setq. Inner lexical bindings
extend—and can shadow—the lexically enclosing lexical envi-
ronment. Note that let/cc creates an immutable binding.

8.35 instance

Every object is the instance of some class. An instance thus
describes an object in relation to its class. An instance takes on
the structure and behaviour described by its class. An instance
can be either direct or indirect.

8.36 instantiation graph

A directed graph whose nodes are objects and whose edges are
defined by the instance relations between the objects. This
graph has only one cycle, an edge from <class> to itself. The
instantiation graph is a tree and <class> is the root.

8.37 lexical environment

The inner and top lexical environment of a module are together
referred to as the lexical environment except when it is neces-
sary to distinguish between them.

Version 0.991

8.38 lexical scope

An access constraint, such that the scope of the entity is limited
to the textual region of the form creating the entity. See also
lexically closer and shadow.

8.39 syntax operator

A syntax operator is distinguished by when it is used: syntax
operators are only used during the syntax expansion of modules
to transform expressions.

8.40 metaclass

A metaclass is a class object whose instances are themselves
classes. All metaclasses in EULISP are instances of <class>,
which is an instance of itself. All metaclasses are also subclasses
of <class>. <class> is a metaclass.

8.41 method

A method describes the action of a generic-function for a par-
ticular list of argument classes called the method’s domain.
A method is thus said to add to the behaviour of each of the
classes in its domain. Methods are not functions but objects
which contain, among other information, a function represent-
ing the method’s behaviour.

8.42 method function

A function which implements the behaviour of a particular
method. Method functions have special restrictions which do
not apply to all functions: their formal parameter bindings
are immutable, and the special operators call-next-method
and next-method? are only valid within the lexical scope of a
method function.

8.43 method specificity

A domain domain; is more specific than another domains if the
first class in domainy is a subclass of the first class in domaing,
or, if they are the same, the rest of domain, is more specific
than the rest of domains.

8.44 multi-method
A method which specializes on more than one argument.

8.45 new instance
A newly allocated instance, which is distinct, but can be iso-
morphic to other instances.

8.46 reflective

A system which can examine and modify its own state is said
to be reflective. EULISP is reflective to the extent that it has
explicit class objects and metaclasses, and user-extensible op-
erations upon them.

8.47 scope
That part of the extent in which a given wvariable is accessible.
Scope is constrained to be lezical, dynamic or indefinite.

8.48 self-instantiated class
A class which is an instance of itself. In EULISP, <class> is
the only example of a self-instantiated class.

8.49 setter function
The function associated with the function that accesses a place
in an entity, which changes the value stored in that place.

8.50 simple function

A function comprises at least: an expression, a set of identifiers,
which occur in the expression, called the parameters and the
closure of the expression with respect to the lexical environment
in which it occurs, less the parameter identifiers. Note: this is
not a definition of the class <simple-function>.

8.51 slot

Version 0.991

A named component of an object which can be accessed using
the slot’s accessor. Each slot of an object is described by a slot
description associated with the class of the object. When we
refer to the structure of an object, this usually means its set of
slots.

8.52 slot description

A slot description describes a slot in the instances of a class.
This description includes the slot’s name, its logical position
in instances, and a way to determine its default value. A
class’s slot descriptions may be accessed through the function
class-slots. A slot description can be either direct or inher-
ited.

8.53 slot option

A keyword and its associated value applying to one of the slots
appearing in a class definition form, for example: the accessor
keyword and its value, which defines a function used to read
or write the value of a particular slot.

8.54 slot specification

A list of alternating keywords and values (starting with a key-
word) which represents a not-yet-created slot description dur-
ing class initialization.

8.55 special form

Any form or syntaz expression expanding into a form whose
operator is a special operator. They are semantic primitives of
the language and in consequence, any processor (for example,
a compiler or a code-walker) need be able to process only the
special forms of the language and compositions of them.

8.56 special operator

One of a-special-form, call-next-handler,
call-next-method, dynamic, dynamic-let, dynamic-setq, if,
letfuns, lambda, let/cc, next-method?, progn, quote, setq,
unwind-protect, or with-handler.

8.57 specialize

A verbal form used to describe the creation of a more specific
version of some entity. Normally applied to classes, slots and
methods.

8.58 specialize on
A verbal form used to describe relationship of methods and the
classes specified in their domains.

8.59 subclass

The behaviour and structure defined by a class class1 are in-
herited by a set of classes which are termed subclasses of classi .
A subclass can be either direct or indirect or itself.

8.60 superclass
A class; is a superclass of classs iff classs is a subclass of classi.
A superclass can be either direct or indirect or itself.

8.61 top dynamic

Top dynamic bindings are created by defglobal, referenced by
dynamic and modified by dynamic-setq. There is only one top
dynamic environment.

8.62 top lexical

Top lexical bindings are created in the top lexical environment
of a module by a defining form. All these bindings are im-
mutable except those created by deflocal which creates a mu-
table top-lexical binding. All such bindings are referenced by
variables and those made by deflocal are modified by setq.
Each module defines its own distinct top lexical environment.

Programming Language EuLisp:2010(E)

9 Lexical Syntax

9.1 Character Set

Case is distinguished in each of characters, strings and identi-
fiers, so that variable-name and Variable-name are different,
but where a character is used in a positional number repre-
sentation (e.g. #\x3Ad) the case is ignored. Thus, case is also
significant in this definition and, as will be observed later, all
the special form and standard function names are lower case.
In this section, and throughout this text, the names for indi-
vidual character glyphs are those used in |]

The minimal character set to support EULISP is defined in syn-
tax table 9.1. The language as defined in this text uses only
the characters given in this table. Thus, left hand sides of
the productions in this table define and name groups of char-
acters which are used later in this definition: decimal-digit,
upper-letter, lower-letter, letter, other-character and special-
character. Any character not specified here is classified under
other-character, which permits its use as an initial or a con-
stituent character of an identifier (see § 9.3.0.3).

9.1.0.1 Syntax

decimal-digit: one of
0123456789
upper-letter: one of
ABCDEFGHTIJ
NOPQRSTUVW
lower-letter: one of
abcdefghijklm
nopgrstuvwxyz
letter:
upper-letter
lower-letter
normal-other-character:
*x /< =>4+ .
other-character:
normal-other-character
special-character: one of
;2 \N"# () ‘e
level-0-character:
decimal-digit
letter
other-character
special-character

KLM
XY Z

L
Y

one of

9.2 Whitespace and Comments

Whitespace characters are spaces, newlines, line feeds, carriage
returns, character tabulations, line tabulations and form feeds.
The newline character is also used to represent end of record
for configurations providing such an input model, thus, a ref-
erence to newline in this definition should also be read as a
reference to end of record. Whitespace separates tokens and is
only significant in a string or when it occurs escaped within an
identifier.

A line comment is introduced by a semicolon (;) and continues
up to, but does not include, the end of the line. Hence, a line
comment cannot occur in the middle of a token because of the
whitespace in the form of the newline which is to whitespace.
An object comment is introduced by the #; sequence optionally
followed by whitespace and an object to be “commented out”.

Programming Language EuLisp:2010(E)

Version 0.991

9.2.0.2 Syntax 9.3.0.3 Syntax

whitespace: identifier:
space normal-identifier
newline peculiar-identifier
line-feed escaped-identifier
return normal-identifier:
tab normal-initial normal-constituent”
vertical-tab normal-initial:
form-feed letter

comment: normal-other-character
; all subsequent characters normal-constituent:

up to the end of the line letter
#; whilespace™ object decimal-digit
other-character

NOTE 1 There is no notation in EULISP for block comments.

9.3 Identifiers

Identifiers in EULISP are very similar lexically to identifiers in
other Lisps and in other programming languages. Informally,
an identifier is a sequence of letter, decimal-digit and other-
characters starting with a character that is not a decimal-digit.
special-characters must be escaped if they are to be used in the
names of identifiers. However, because the common notations
for arithmetic operations are the glyphs for plus (+) and minus
(=), which are also used to indicate the sign of a number, these
glyphs are classified as identifiers in their own right as well as
being part of the syntax of a number.

Sometimes, it might be desirable to incorporate characters in
an identifier that are normally not legal constituents. The aim
of escaping in identifiers is to change the meaning of particular
characters so that they can appear where they are not oth-
erwise acceptable. Identifiers containing characters that are
not ordinarily legal constituents can be written by delimiting
the sequence of characters by multiple-escape, the glyph for
which is called vertical bar (1). The multiple-escape denotes
the beginning of an escaped part of an identifier and the next
multiple-escape denotes the end of an escaped part of an iden-
tifier. A single character that would otherwise not be a legal
constituent can be written by preceding it with single-escape,
the glyph for which is called reverse solidus (\). Therefore,
single-escape can be used to incorporate the multiple-escape or
the single-escape character in an identifier, delimited (or not)
by multiple-escapes. For example, |) . (| is the identifier whose
name contains the three characters #\), #\. and #\(, and a|b|
is the identifier whose name contains the characters #\a and
#\b. The sequence || is the identifier with no name, and so is
[111, but I\ is the identifier whose name contains the single
character |, which can also be written \|, without delimiting
multiple-escapes.

10

peculiar-identifier:

=1 -}

{peculiar-constituent normal-constituent” }opt
peculiar-constituent normal-constituent”

peculiar-constituent:

letter

other-character
escaped-identifier:

escaped-sequence escaped-sequences”

normal-initial escaped-sequences”

\level-0-character escaped-sequences”
escaped-sequences:

escaped-sequence

escaped-or-normal-constituent”
escaped-sequence:

| escaped-sequence-constituent” |
escaped-or-normal-constituent:

\level-0-character

normal-constituent
escaped-sequence-constituent:

\level-0-character

level-0-character other than |

9.4 Objects

An object is either a literal, a symbol or a list. The syntax of
the classes of objects that can be read by EULISP is defined
in the section of this definition corresponding to the class as
defined below:

9.4.0.4 Syntax

object:
literal
list §16.12
symbol §16.17

literal:
boolean
character §16.1
float §16.7
integer §16.10
string §16.16
vector §16.19

9.5 Boolean

A boolean value is either false , which is represented by the
empty list—written () and is also the value of nil—or true ,
which is represented by any other value than () or if specified
as t:

Version 0.991

9.5.0.5 Syntax

boolean:

true

false
true:

t

object not ()
false:

O

nil

Although the class containing exactly this set of values is not
defined in the language, notation is abused for convenience and
boolean is defined, for the purposes of this definition, to mean
that set of values.

Programming Language EuLisp:2010(E)

10 Modules

The EULISP module scheme has several influences: LeLisp’s
module system and module compiler (complice), Haskell,
ML [13], MIT-Scheme’s make-environment and T’s locales.

All bindings of objects in EULISP reside in some module some-
where. Also, all programs in EULISP are written as one or
more modules. Almost every module imports a number of
other modules to make its definition meaningful. These im-
ports have two purposes, which are separated in EULISP: firstly
the bindings needed to process the syntax in which the module
is written, and secondly the bindings needed to resolve the free
variables in the module after syntax expansion. These bindings
are made accessible by specifying which modules are to be im-
ported for which purpose in a directive at the beginning of each
module. The names of modules are bound in a disjoint binding
environment which is only accessible via the module definition
form. That is to say, modules are not first-class. The body of
a module definition comprises a list of directives followed by a
sequence of level-0 and export forms.

The module mechanism provides abstraction and security in
a form complementary to that provided by the object system.
Indeed, although objects do support data abstraction, they do
not support all forms of information hiding and they are usually
conceptually smaller units than modules. A module defines a
mapping between a set of names and either local or imported
bindings of those names. Most such bindings are immutable.
The exception are those bindings created by deflocal which
may be modified by both the defining and importing modules.
There are no implicit imports into a module—not even the spe-
cial forms are available in a module that imports nothing. A
module exports nothing by default. Mutually referential mod-
ules are not possible because a module must be defined before
it can be used. Hence, the importation dependencies form a
directed acyclic graph. The processing of a module definition
uses three environments, which are initially empty. These are
the top-lexical, the external and the syntax environments of
the module.

top-lexical: The top-lexical environment comprises all
the locally defined bindings and all the imported bindings.

external: The external environment comprises all the ex-
posed bindings—bindings from modules being exposed by
this module but not necessarily imported—and all the ex-
ported bindings, which are either local or imported. Thus,
the external environment might not be a subset of the top-
lexical environment because, by virtue of an expose direc-
tive, it can contain bindings from modules which have not
been imported. This is the environment received by any
module importing this module.

syntax: The syntax environment comprises all the bind-
ings available for the syntax expansion of the module.

Each binding is a pair of a local-name and a module-name. Tt
is a violation if any two instances of local-name in any one of
these environments have different module-names. This is called
a name clash. These environments do not all need to exist at
the same time, but it is simpler for the purposes of definition
to describe module processing as if they do.

10.1 Module Definition

10.1.1 defmodule syntax

11

Programming Language EuLisp:2010(E)

10.1.1.1 Syntax

defmodule-0-form:

(defmodule module-name
module-directives
level-0-module-form™)

module-name:

identifier

module-directives:

(module-directive™)

module-directive:

export (identifier”)

expose (module-descriptor™)

import (module-descriptor”™)

syntax (module-descriptor”)
level-0-module-form:

(export identifier”)

level-0-form

defining-0-form

(progn level-0-module-form™)

module-descriptor:

module-name

module-filter

module-filter:

(except (identifier™) module-descriptor)

(only (identifier™) module-descriptor)

(rename (rename-pair®) module-descriptor)

rename-pair:

(identifier identifier)

level-0-form:

identifier

literal

special-0-form

function-call-form

form:

level-0-form

special-form:
special-0-form

Arguments

module name: A symbol used to name the module.

module directives: A form specifying the exported
names, exposed modules, imported modules and
syntax modules used by this module.

module form: One of a defining form, an expression
or an export directive.

Remarks

The defmodule form defines a module named by module-name
and associates the name module-name with a module object in
the module binding environment.

NOTE 1 Intentionally, nothing is defined about any relationship
between modules and files.

Examples

An example module definition with explanatory comments is
given in example 1.

10.2 Directives

The list of module directives is a sequence of keywords and
forms, where the keywords indicate the interpretation of the
forms (see syntax table 10.1.1.1). This representation allows
for the addition of further keywords at other levels of the def-
inition and also for implementation-defined keywords. For the
keywords given here, there is no defined order of appearance,

12

Version 0.991

nor is there any restriction on the number of times that a key-
word can appear. Multiple occurrences of any of the directives
defined here are treated as if there is a single directive whose
form is the combination of each of the occurrences. This defini-
tion describes the processing of four keywords, which are now
described in detail. The syntax of all the directives is given in
syntax table 10.1.1.1 and an example of their use appears in
example 1.

10.2.1 export Directive

This is denoted by the keyword export followed by a sequence
of names of top-lexical bindings—these could be either locally-
defined or imported—and has the effect of making those bind-
ings accessible to any module importing this module by adding
them to the external environment of the module. A name clash
can arise in the external environment from interaction with ex-
posed modules.

10.2.2 import Directive

This is denoted by the keyword import followed by a sequence
of module-descriptors (see syntax table 10.1.1.1), being module
names or the filters except, only and rename. This sequence
denotes the union of all the names generated by each element
of the sequence. A filter can, in turn, be applied to a sequence
of module descriptors, and so the effect of different kinds of
filters can be combined by nesting them. An import directive
specifies either the importation of a module in its entirety or
the selective importation of specified bindings from a module.

The purpose of this directive is to specify the imported bind-
ings which constitute part of the top-lexical environment of a
module. These are the explicit run-time dependencies of the
module. Additional run-time dependencies may arise as a re-
sult of syntax expansion. These are called implicit run-time
dependencies.

In processing import directives, every name should be thought
of as a pair of a module-0-name and a local-name. Intuitively, a
namelist of such pairs is generated by reference to the module
name and then filtered by except, only and rename. In an
import directive, when a namelist has been filtered, the names
are regarded as being defined in the top-lexical environment
of the module into which they have been imported. A name
clash can arise in the top-lexical environment from interaction
between different imported modules. Elements of an import
directive are interpreted as follows:

module-name: All the exported names from module-name.

except : Filters the names from each module-descriptor
discarding those specified and keeping all other names.
The except directive is convenient when almost all of the
names exported by a module are required, since it is only
necessary to name those few that are not wanted to ex-
clude them.

only : Filters the names from each module-descriptor
keeping only those names specified and discarding all other
names. The only directive is convenient when only a few
names exported by a module are required, since it is only
necessary to name those that are wanted to include them.

rename : Filters the names from each module-descriptor
replacing those with old-name by new-name. Any name
not mentioned in the replacement list is passed unchanged.
Note that once a name has been replaced the new-name
is not compared against the replacement list again. Thus,
a binding can only be renamed once by a single rename
directive. In consequence, name exchanges are possible.

Version 0.991

Programming Language EuLisp:2010(E)

Example 1 — module directives

(defmodule a-module
(import

(module-1

(except (binding-a) module-2)

(only (binding-b) module-3)

(rename
((binding-c binding-d) (binding-d binding-c))
module-4))

syntax
(syntax-module-1
(rename ((syntax-a syntax-b))
syntax-module-2)
(rename ((syntax-c syntax-a))
syntax-module-3))

expose
((except (binding-e) module-5)
module-6)

export

(binding-1 binding-2 binding-3))
(export local-binding-4)

(export binding-c)
)

10.2.3 expose Directive

This is denoted by the keyword expose followed by a list of
module-directives (see syntax table 10.1.1.1). The purpose of
this directive is to allow a module to export subsets of the
external environments of various modules without importing
them itself. Processing an expose directive employs the same
model as for imports, namely, a pair of a module-name and
a local-name with the same filtering operations. When the
namelist has been filtered, the names are added to the external
environment of the module begin processed. A name clash can
arise in the external environment from interaction with exports
or between different exposed modules. As an example of the use
of expose, a possible implementation of the level-0 module is
shown in example 1.

Example 1 — module using expose

(defmodule level-0
(expose
(character collection compare condition convert
copy double-float elementary-functions event
formatted-io int function
keyword list lock number object-0 stream string
symbol syntax-0 table thread vector)))

It is also meaningful for a module to include itself in an expose
directive. In this way, it is possible to refer to all the bindings in
the module being defined. This is convenient, in combination
with except (see § 10.2.2), as a way of exporting all but a few
bindings in a module, especially if syntax expansion creates
additional bindings whose names are not known, but should
be exported.

import everything from module-1
all but binding-a from module-2
only binding-b from module-3

all of module-4, but exchange
the names of binding-c and binding-d

all of the module syntax-module-1
rename the binding of syntax-a
of syntax-module-2 as syntax-b
rename the binding of syntax-c
of syntax-module-3 as syntax-a

all but binding-e from module-5
export all of module-6

and three bindings from this module
a fourth binding from this module

the imported binding binding-c

10.2.4 syntax Directive

This directive is processed in the same way as an import di-
rective, except that the bindings are added to the syntax en-
vironment. This environment is used in the second phase of
module processing (syntax expansion). These constitute the
dependencies for the syntax expansion of the definitions and
expressions in the body of the module. A name clash can arise
in the syntax environment from interaction between different
syntax modules.

It is important to note that special forms are considered part
of the syntax and they may also be renamed.

10.3 Definitions and Expressions

Definitions in a module only contain unquali-
fied names—that 1is, local-names, using the above
terminology and are created by defining forms:

defining-0-form:
defclass-form
defcondition-form
defconstant-form
deflocal-form
defgeneric-form
defsyntax-form
defun-form

A top-lexical binding is created exactly once and shared with
all modules that import its exported name from the module
that created the binding. A name clash can arise in the top-
lexical environment from interaction between local definitions
and between local definitions and imported modules. Only
top-lexical bindings created by deflocal are mutable—both
in the defining module and in any importing module. It is a
violation to modify an immutable binding. Expressions, that is
non-defining forms, are collected and evaluated in order of ap-

13

Programming Language EuLisp:2010(E)

pearance at the end of the module definition process when the
top-lexical environment is complete—that is after the creation
and initialization of the top-lexical bindings. The exception to
this is the progn form, which is descended and the forms within
it are treated as if the progn were not present. Definitions may

only

appear either at top-level within a module definition or

inside any number of progn forms. This is specified more pre-
cisely in the grammar for a module in syntax table 10.1.1.1.

10.4 Special Forms

*HFHGW Say something!

special-0-form:

defmethod-form
generic-lambda-form
quote-form
lambda-form
setq-form

if-form

let/cc-form
letfuns-form
progn-form
unwind-protect-form
quasiquote-form
unquote-form
unquote-splicing-form
call-next-handler-form
with-handler-form
cond-form

and-form

or-form

block-form
return-from-form
let-form
let-star-form
with-input-file-form
with-output-file-form
with-source-form
with-sink-form

10.5 Module Processing

The
cess:

14

following steps summarize the module definition pro-

directive processing: This is described in detail in
8 10.2-10.2.4. This step creates and initializes the top-
lexical, syntax and external environments.

syntax expansion: The body of the module is expanded
according to the operators defined in the syntax environ-
ment constructed from the syntax directive.

NOTE 1 The semantics of syntax expansion are still under
discussion and will be described fully in a future version of the
EULISP definition. In outline, however, it is intended that
the mechanism should provide for hygenic expansion of forms
in such a way that the programmer need have no knowledge
of the expansion-time or run-time dependencies of the syntax
defining module. Currently syntax expansion is unhygienic to
allow a simple syntax for syntax operator definition.

static analysis: The expanded body of the module is an-
alyzed. Names referenced in export forms are added to the
external environment. Names defined by defining forms
are added to the top-lexical environment. It is a viola-
tion, if a free identifier in an expression or defining form
does not have a binding in the top-lexical environment.

Version 0.991

NOTE 2 Additional implementation-defined steps may be
added here, such as compilation.

initialization: The top-lexical bindings of the module
(created above) are initialized by evaluating the defining
forms in the body of the module in the order they appear.

NOTE 3 In this sense, a module can be regarded as a gener-
alization of the letfuns form of this and other Lisp dialects.

expression evaluation: The expressions in the body of
the module are evaluated in the order in which they ap-
pear.

Version 0.991

11 Objects

In EULISP, every object in the system has a specific class.
Classes themselves are first-class objects. In this respect EULISP
differs from statically-typed object-oriented languages such as
C++ and p CEYX. The EULISP object system is called TELOS.
The facilities of the object system are split across the two levels
of the definition. Level-0 supports the definition of generic
functions, methods and structures. The defined name of this
module is telosO.

Programs written using TELOS typically involve the design
of a class hierarchy, where each class represents a category of
entities in the problem domain, and a protocol, which defines
the operations on the objects in the problem domain.

A class defines the structure and behaviour of its instances.
Structure is the information contained in the class’s instances
and behaviour is the way in which the instances are treated by
the protocol defined for them.

The components of an object are called its slots. Each slot of
an object is defined by its class.

A protocol defines the operations which can be applied to in-
stances of a set of classes. This protocol is typically defined in
terms of a set of generic functions, which are functions whose
application behaviour depends on the classes of the arguments.
The particular class-specific behaviour is partitioned into sep-
arate units called methods. A method is not a function itself,
but is a closed expression which is a component of a generic
function.

Generic functions replace the send construct found in many
object-oriented languages. In contrast to sending a message
to a particular object, which it must know how to handle, the
method executed by a generic function is determined by all of
its arguments. Methods which specialize on more than one of
their arguments are called multi-methods.

Inheritance is provided through classes. Slots and methods
defined for a class will also be defined for its subclasses but
a subclass may specialize them. In practice, this means that
an instance of a class will contain all the slots defined directly
in the class as well as all of those defined in the class’s su-
perclasses. In addition, a method specialized on a particular
class will be applicable to direct and indirect instances of this
class. The inheritance rules, the applicability of methods and
the generic dispatch are described in detail later in this section.

Classes are defined wusing the defclass (11.3) and
defcondition (13) defining forms, both of which create
top-lexical bindings.

Generic functions are defined using the defgeneric defining
form, which creates a named generic function in the top-
lexical environment of the module in which it appears and
generic-lambda, which creates an anonymous generic func-
tion. These forms are described in detail later in this section.

Methods can either be defined at the same time as the generic
function, or else defined separately using the defmethod syn-
tax operator, which adds a new method to an existing generic
function. This syntax operator is described in detail later in
this section.

11.1 System Defined Classes

The basic classes of EULISP are elements of the object sys-
tem class hierarchy, which is shown in table 1. Indentation
indicates a subclass relationship to the class under which the

Programming Language EuLisp:2010(E)

Table 1 — Level-0 class hierarchy

A <object>
C <character>
A <condition> See table 2
A <function>
C <continuation>
C <simple-function>
P <generic-function>
C <simple-generic-function>
A <collection>
A <sequence>
P <list>
C <cons>
C <null>
A <character-sequence>
C <string>
C <vector>
A <table>
C <hash-table>
C <lock>
A <number>
A <integer>
C <fpi>
A <float>
C <double-float>
A <stream>
A <buffered-stream>
C <string-stream>
C <file-stream>
A <name>
C <symbol>
C <keyword>
A <thread>
C <simple-thread>

line has been indented, for example, <condition> is a subclass
of <object> The names given here correspond to the bind-
ings of names to classes as they are exported from the level-0
modules. Classes directly relevant to the object system are
described in this section while others are described in corre-
sponding sections, e.g. <condition> is described in § 12.8. In
this definition, unless otherwise specified, classes declared to be
subclasses of other classes may be indirect subclasses. Classes
not declared to be in a subclass relationship are disjoint. Fur-
thermore, unless otherwise specified, all objects declared to be
of a certain class may be indirect instances of that class.

11.1.1 <object> class

The root of the inheritance hierarchy. <object> defines the
basic methods for initialization and external representation of
objects. No initialization options are specified for <object>.

11.1.2 <class> class

The default super-class including for itself. All classes de-
fined using the defclass form are direct or indirect subclasses
of <class>. Thus, this class is specializable by user-defined
classes at level-0.

11.2 Single Inheritance

TELOS level-0 provides only single inheritance, meaning that
a class can have exactly one direct superclass—but indefinitely

15

Programming Language EuLisp:2010(E)

many direct subclasses. In fact, all classes in the level-0 class
inheritance tree have exactly one direct superclass except the
root class <object> which has no direct superclass.

Each class has a class precedence list (CPL), a linearized list
of all its superclasses, which defines the classes from which the
class inherits structure and behaviour. For single inheritance
classes, this list is defined recursively as follows:

a) the CPL of <object> is a list of one element containing
<object> itself;

b) the CPL of any other class is a list of classes beginning

with the class itself followed by the elements of the CPL
of its direct superclass which is <object> by default.

The class precedence list controls system-defined protocols con-
cerning:

a) inheritance of slot and class options when initializing a
class;

b) method lookup and generic dispatch when applying a
generic function.

11.3 Defining Classes

11.3.1 defclass defining operator

11.3.1.1 Syntax

defclass-form:
(defclass class-name superclass-name
(slot™) class-option™)
class-name:
identifier
superclass-name:
identifier
slot:
slot-name
(slot-name slot-option™)

slot-name:
identifier

slot-option:
keyword: identifier
default: level-0-form
reader: identifier
writer: identifier
accessor: identifier
required?: boolean

class-option:
keywords: (identifier™)
constructor: constructor-specification
predicate: identifier
abstract?: boolean

constructor-specification:

(identifier identifier”)
inatlist:

{identifier object}*

Arguments
class-name: A symbol naming a binding to be initial-
ized with the new structure class. The binding is
immutable.

superclass-name: A symbol naming a binding of a

class to be used as the direct superclass of the
new structure class.

16

Version 0.991

slot: Either a slot-name or a list of slot-name followed
by some slot-options.

class-option: A key and a value (see below) which,
taken together, apply to the class as a whole.

Remarks

defclass defines a new structure class. Structure classes sup-
port single inheritance as described above. Neither class redef-
inition nor changing the class of an instance is supported by
structure classes.

The slot-options are interpreted as follows:

keyword : identifier: The value of this option is an
identifier naming a symbol, which is the name of
an argument to be supplied in the initialization
options of a call to make on the new class. The
value of this argument in the call to make is the
initial value of the slot. This option must only
be specified once for a particular slot. The same
keyword name may be used for several slots, in
which case they will share the same initial value
if the keyword is given to make. Subclasses in-
herit the keyword. Each slot must have at most
one keyword including the inherited one. That
means, a subclass can not shadow or add a new
keyword, if a superclass has already defined one.

default : level-0-form: The value of this option is a
form, which is evaluated as the default value of
the slot, to be used if no keyword is defined for
the slot or given to a call to make. The expres-
sion is evaluated in the lexical environment of the
call to defclass and the dynamic environment of
the call to make. The expression is evaluated each
time make is called and the default value is called
for. The order of evaluation of the defaults in all
the slots is determined by initialize. This op-
tion must only be specified once for a particular
slot. Subclasses inherit the default. However, a
more specific form may be specified in a subclass,
which will shadow the inherited one.

reader : identifier: The value is the identifier of the
variable to which the reader function will be
bound. The binding is immutable. The reader
function is a means to access the slot. The reader
function is a function of one argument, which
should be an instance of the new class. No writer
function is automatically bound with this option.
This option can be specified more than once for a
slot, creating several bindings for the same reader
function. It is a violation to specify the same
reader, writer, or accessor name for two different
slots.

writer : identifier: The value is the identifier of the
variable to which the writer function will be
bound. The binding is immutable. The writer
function is a means to change the slot value. The
creation of the writer is analogous to that of the
reader function. The writer function is a function
of two arguments, the first should be an instance
of the new class and the second can be any new
value for the slot. This option can be specified
more than once for a slot. It is a violation to

D1In combination with the guarantee that the behaviour of generic
functions cannot be modified once it has been defined, due to no
support for method removal nor method combination, this imbues
level-0 programs with static semantics.

Version 0.991

specify the same reader, writer, or accessor name
for two different slots.

accessor : identifier: The value is the identifier of
the variable to which the reader function will be
bound. In addition, the use of this slot-option
causes the writer function to be associated to the
reader via the setter mechanism. This option
can be specified more than once for a slot. It is
a violation to specify the same reader, writer, or
accessor name for two different slots.

required? : boolean: The value is either t or (). t
indicates that an initialization argument must be
supplied for this slot.

The class-options are interpreted as follows:

keywords : (identifier™): The value of this option
is a list of identifiers naming symbols, which ex-
tend the inherited names of arguments to be sup-
plied to make on the new class. Keywords are
inherited by union. The values of all legal argu-
ments in the call to make are the initial values
of corresponding slots if they name a slot key-
word or are ignored by the default initialize
<object> method, otherwise. This option must
only be specified once for a class.

constructor : constructor-specification: Creates a
constructor function for the new class. The con-
structor specification gives the name to which the
constructor function will be bound, followed by
a sequence of legal keywords for the class. The
new function creates an instance of the class and
fills in the slots according to the match between
the specified keywords and the given arguments
to the constructor function. This option may be
specified any number of times for a class.

predicate : identifier: Creates a function which
tests whether an object is an instance of the new
class. The predicate specification gives the name
to which the predicate function will be bound.
This option may be specified any number of times
for a class.

abstract? : boolean: The value is either t or (). t
indicates that the class being defined is abstract.

Programming Language EuLisp:2010(E)

11.4.2 <simple-function> <function> class

Place holder for <simple-function> class.

11.3.2 abstract-class? function

11.3.2.1 Signature

(abstract-class? object) — <object>

Arguments
object: Returns object, if it is an abstract class, oth-
erwise ().
NOTE 1 abstract-class? is not currently implemented in
Youtoo.

11.4 Defining Generic Functions and Methods

11.4.1 <function> <object> class

The class of all functions.

11.4.3 <generic-function> <function> class

The class of all generic functions.

11.4.4 <simple-generic-function>

<generic-function> class

Place holder for <simple-generic-function> class..

11.4.5 defgeneric defining operator

11.4.5.1 Syntax

defgeneric-form:

(defgeneric gf-name gf-lambda-list

level-0-init-option)

gf-name:

identifier
gf-lambda-list:

specialized-lambda-list
level-0-init-option:

method method-description
method-description:

(specialized-lambda-list form™)
specialized-lambda-list:

(specialized-parameter™ {. identifier}opt)
specialized-parameter:

(identifier class-name)

identifier

Arguments

gf-name: One of a symbol, or a form denoting a setter
function or a converter function.

gf-lambda-list: The parameter list of the generic func-
tion, which may be specialized to restrict the do-
main of methods to be attached to the generic
function.

level-0-init-option: is method method-description

where method-description is a list comprising the
specialized-lambda-list of the method, which de-
notes the domain, and a sequence of forms, de-
noting the method body. The method body is
closed in the lexical environment in which the
generic function definition appears. This option
may be specified more than once.

Remarks

This defining form defines a new generic function. The result-
ing generic function will be bound to gf-name. The second ar-
gument is the formal parameter list. The method’s specialized
lamba list must be congruent to that of the generic function.
Two lambda lists are said to be congruent iff:

a) both have the same number of formal parameters, and
b) if one lambda list has a rest formal parameter then the

other lambda list has a rest formal parameter too, and
vice versa.

17

Programming Language EuLisp:2010(E)

An error is signalled (condition class:
<non-congruent-lambda-lists>) if any method defined
on this generic function does not have a lambda list congruent
to that of the generic function.

An error is signalled (condition class:
<incompatible-method-domain>) if the method’s spe-
cialized lambda list widens the domain of the generic function.
In other words, the lambda lists of all methods must specialize
on subclasses of the classes in the lambda list of the generic
function.

An error is signalled (condition class: <method-domain-clash>
) if any methods defined on this generic function have the same
domain. These conditions apply both to methods defined at
the same time as the generic function and to any methods
added subsequently by defmethod. An level-0-init-option is an
identifier followed by a corresponding value.

An error is signalled (condition class:
<no-applicable-method>) if an attempt is made to ap-
ply a generic function which has no applicable methods for
the classes of the arguments supplied.

11.4.5.2

Rewrite Rules

(defgeneric identifier
gf-lambda-list level-0-init-option™)
= (defconstant identifier
(generic-lambda
gf-lambda-list level-0-init-option™))
(defgeneric
(setter identifier)
gf-lambda-list level-0-init-option™)
= ((setter setter) identifier
(generic-lambda
gf-lambda-list level-0-init-option™))
(defgeneric
(converter identifier)
gf-lambda-list level-0-init-option™)
= ((setter converter)
identifier
(generic-lambda
gf-lambda-list level-0-init-option™))

Examples

In the following example of the use of defgeneric a generic
function named gf-0 is defined with three methods attached
to it. The domain of gf-0 is constrained to be <object> X
<class-a>. In consequence, each method added to the generic
function, both here and later (by defmethod), must have a
domain which is a subclass of <object> x <class-a>, which is
to say that <class-c>, <class-e> and <class-g> must all be
subclasses of <class-a>.

(defgeneric gf-0 (argl (arg2 <class-a>))

method (((ml-argl <class-b>)
(ml-arg2 <class-c>)) ...)

method (((m2-argl <class-d>)
(m2-arg2 <class-e>)) ...)

method (((m3-argl <class-f>)
(m3-arg2 <class-g>)) ...))

See also

defmethod, generic-lambda.

11.4.6 defmethod defining operator

18

Version 0.991

11.4.6.1

defmethod-form:

(defmethod gf-locator
specialized-lambda-list
body)

gf-locator:

identifier

(setter identifier)

(converter identifier)

Syntax

Remarks

This syntax operator is used for defining new methods on
generic functions. A new method object is defined with the
specified body and with the domain given by the specialized-
lambda-list. This method is added to the generic func-
tion bound to gf-name, which is an identifier, or a form
denoting a setter function or a converter function. If
the specialized-lambda-list is not congruent with that of
the generic function, an error is signalled (condition class:
<non-congruent-lambda-lists>). An error is signalled (con-
dition class: <incompatible-method-domain>) if the method’s
specialized lambda list would widen the domain of the generic
function. If there is a method with the same domain already
defined on this gneric function, an error is signalled (condition
class: <method-domain-clash>).

11.4.7 generic-lambda special operator

11.4.7.1

generic-lambda-form:
(generic-lambda gf-lambda-list
level-0-init-option™)

Syntax

Remarks

generic-lambda creates and returns an anonymous generic
function that can be applied immediately, much like the nor-
mal lambda. The gf-lambda-list and the level-0-init-options are
interpreted exactly as for the level-0 definition of defgeneric.

Examples
In the following example an anonymous version of gf-0 (see
defgeneric above) is defined. In all other respects the result-
ing object is the same as gf-0.
(generic-lambda ((argl <object>)
(arg2 <class-a>))

method (((ml-argl <class-b>)
(ml-arg2 <class-c>)) ...)

method (((m2-argl <class-d>)
(m2-arg2 <class-e>)) ...)

method (((m3-argl <class-f>)
(m3-arg2 <class-g>)) ...))

See also

defgeneric.
11.5 Specializing Methods

The following two operators are used to specialize more general
methods. The more specialized method can do some additional
computation before calling these operators and can then carry
out further computation before returning. It is an error to use
either of these operators outside a method body. Argument
bindings inside methods are immutable. Therefore an argu-

Version 0.991

ment inside a method retains its specialized class throughout
the processing of the method.

11.5.1 call-next-method special operator

11.5.1.1

Signature

(call-next-method) — <object>

Result
The result of calling the next most specific applicable method.

Remarks

The next most specific applicable method is called with the
same arguments as the current method. An error is signalled
(condition class: <no-next-method>) if there is no next most
specific method.

11.5.2 next-method? special operator

11.5.2.1 Signature

(next-method?) — boolean

Result

If there is a next most specific method, next-method? returns
a non-() value, otherwise, it returns ().

11.6 Method Lookup and Generic Dispatch

The system defined method lookup and generic function dis-
patch is purely class based.

The application behaviour of a generic function can be de-
scribed in terms of method lookup and generic dispatch. The
method lookup determines

a) which methods attached to the generic function are appli-
cable to the supplied arguments, and

b) the linear order of the applicable methods with respect
to classes of the arguments and the argument precedence
order.

A class C; is called more specific than class Ca with respect to
Cs iff C1 appears before Cs in the class precedence list (CPL)

of C3 %,

Two additional concepts are needed to explain the processes of
method lookup and generic dispatch: (i) whether a method is
applicable, (ii) how specific it is in relation to the other appli-
cable methods. The definitions of each of these terms is now
given.

A method with the domain D1 x ... X Dp[Xx <list>] is ap-
plicable to the arguments ai ...am[am+1 - .. axn] if the class of

2)This definition is required when multiple inheritance comes into
play. Then, two classes have to be compared with respect to a third
class even if they are not related to each other via the subclass
relationship. Although, multiple inheritance is not provided at level-
0, it is provided at level-1 the method lookup protocol is independent
of the inheritance strategy defined on classes. It depends on the class
precedence lists of the domains of methods attached to the generic
function and the argument classes involved.

Programming Language EuLisp:2010(E)

each argument, C;, is a subclass of D;, which is to say, D; is a
member of C;’s class precedence list.

A method M; with the domain D11 X ... X Dip[Xx <list>]
is more specific than a method Mz with the domain
D21 X ... X Dop[Xx <list>] with respect to the arguments
ai...am[am41 - .. an] iff there exists an ¢ € (1...m) so that
Dy, is more specific than D2; with respect to C;, the class of
a;, and for all j =1...7—1, Dyj; is not more specific than Dy
with respect to C, the class of a;.

Now, with the above definitions, we can describe the applica-
tion behaviour of a generic function (f a1 ...am[@m+1 ... an]):

a) Select the methods applicable to ai...am[@m+1-..an]
from all methods attached to f.

b) Sort the applicable methods M; . ..M into decreasing order
of specificity using left to right argument precedence order

to resolve otherwise equally specific methods.

¢) If call-next-method appears in one of the method bodies,
make the sorted list of applicable methods available for it.

d) Apply the most specific method on a; ...am[am+1 - - . anl.

e) Return the result of the previous step.

The first two steps are usually called method lookup and the
first four are usually called generic dispatch.

11.7 Creating and Initializing Objects
Objects can be created by calling

constructors (predefined or user defined) or
make, the general constructor function or

allocate, the general allocator function.

11.7.1 make function

Arguments
class: The class of the object to create.

keyi1 obji ... keyn objn : Initialization arguments.

Result
An instance of class.

Remarks
The general constructor make creates a new object calling

allocate and initializes it by calling initialize. make returns
whatever allocate returns as its result.

11.7.2 allocate function

Arguments
class: The class to allocate.

initlist: The list of initialization arguments.

Result
A new uninitialized direct instance of the first argument.

19

Programming Language EuLisp:2010(E)

Remarks

The class must be a structure class, the initlist is ignored. The
behaviour of allocate is extended at level-1 for classes not
accessible at level-0. The level-0 behaviour is not affected by
the level-1 extension.

11.7.3 initialize generic function

Generic Arguments

object <object>: The object to initialize.

initlist: The list of initialization arguments.
Result
The initialized object.

Remarks

Initializes an object and returns the initialized object as the
result. It is called by make on a new uninitialized object created
by calling allocate.

Users may extend initialize by defining methods specializing
on newly defined classes, which are structure classes at level-0.

11.7.4 initialize <object> method

Specialized Arguments

object <object>: The object to initialize.

initlist: The list of initialization arguments.
Result
The initialized object.

Remarks

This is the default method attached to initialize.
method performs the following steps:

This

a) Checks if the supplied keywords are legal and signals an
error otherwise. Legal keywords are those specified in the
class definition directly or inherited from a superclass. An
keyword may be specified as a slot-option or as a class-
option.

b) Initializes the slots of the object according to the keyword,
if supplied, or according to the most specific default, if
specified. Otherwise, the slot remains “unbound”.

Legal keywords which do not initialize a slot are ignored by the
default initialize <object> method. More specific methods
may handle these keywords and call the default method by
calling call-next-method.

11.8 Accessing Slots

Object components (slots) can be accessed using reader and
writer functions (accessors) only. For system defined object
classes there are predefined readers and writers. Some of the
writers are accessible using the setter function. If there is
no writer for a slot, its value cannot be changed. When users
define new classes, they can specify which readers and writers
should be accessible in a module and by which binding. Ac-
cessor bindings are not exported automatically when a class
(binding) is exported. They can only be exported explicitly.

20

Version 0.991

11.9 Other Abstract Classes

11.9.1 <name> <object> class

The class of all “names”.

See also

<symbol> and <keyword>.

Version 0.991

12 Level-0 Defining, Special and
Function-call Forms

This section gives the syntax of well-formed expressions and
describes the semantics of the special-forms, functions and syn-
tax forms of the level-0 language. In the case of level-0 syntax
forms, the description includes a set of expansion rules. How-
ever, these descriptions are not prescriptive of any processor
and a conforming program cannot rely on adherence to these
expansions.

12.1 Simple Expressions

12.1.1 constant syntax

There are two kinds of constants, literal constants and defined
constants. Only the first kind are considered here. A literal
constant is a number, a string, a character, or the empty list.
The result of processing such a literal constant is the constant
itself—that is, it denotes itself.

Examples

O the empty list

123 a fixed precision integer
#\a a character

"abc" a string

12.1.2 defconstant defining operator

12.1.2.1 Syntax

defconstant-form: — <object>

(defconstant constant-name form)
constant-name:

identifier

Arguments
identifier: A symbol naming an immutable top-
lexical binding to be initialized with the value
of form.

form: The form whose value will be stored in the
binding of identifier.

Remarks

The value of form is stored in the top-lexical binding of iden-
tifier. It is a violation to attempt to modify the binding of a
defined constant.

12.1.3 t <symbol> constant

Remarks

This may be used to denote the abstract boolean value true,
but so may any other value than ().

12.1.4 symbol syntax

The current lexical binding of symbol is returned. A symbol
can also name a defined constant—that is, an immutable top-
lexical binding.

Programming Language EuLisp:2010(E)

12.1.5 deflocal defining operator

12.1.5.1

deflocal-form: — <object>

(deflocal local-name form)
local-name:

identifier

Syntax

Arguments

identifier: A symbol naming a binding containing the
value of form.

form: The form whose value will be stored in the
binding of identifier.

Remarks

The value of form is stored in the top-lexical binding of iden-
tifier. The binding created by a deflocal form is mutable.

See also

setq.

12.1.6 quote special operator

12.1.6.1 Syntax

quote-form: — object
(quote object)
> object

Arguments

object: the object to be quoted.

Result
The result is object.

Remarks

The result of processing the expression (quote object) is ob-
ject. The object can be any object having an external repre-
sentation . The special form quote can be abbreviated using
apostrophe — graphic representation > — so that (quote a)
can be written *a. These two notations are used to incorporate
literal constants in programs. It is an error to modify a literal
expression .

12.1.7 > syntax

Remarks

See quote.

12.2 Functions:
application

creation, definition and

12.2.1 1lambda special operator

21

Programming Language EuLisp:2010(E) Version 0.991

12.2.1.1 Syntax NOTE 1 A syntax operator is automatically exported from the the
X module which defines because it cannot be used in the module which
lambda-form: — <function> defines it.

(lambda lambda-list body)
lambda-list:

identifier See also
simple-list lambda.
rest-list
stmple-list:
(identifier”) 12.2.3 defun defining operator
rest-list:
(udentifier* . identifier) 12.2.3.1 Syntax
body:
form™ defun-form: — <function>
simple-defun
setter-defun
Arguments simple-defun:
lambda-list: The parameter list of the function con- (defun function-name lambda-list
forming to the syntax 12.2.1.1. body)
setter-defun:
form: An expression. (defun (setter function-name) lambda-list
body)
Result function-name:
A function with the specified lambda-list and sequence of forms. identifier
Remarks Arguments
The function construction operator is lambda. Access to the function-name: A symbol naming an immutable top-
lexical environment of definition is guaranteed. The syntax of lexical binding to be initialized with a function
lambda-list is defined in reflambda-syntax-table. having the specified lambda-list and body.
If lambda-list is an identifier, it is bound to a newly allocated (setter function-name): An expression denoting
list of the actual parameters. This binding has lexical scope and the setter function to correspond to function-
indefinite extent. If lambda-list is a simple-list, the arguments name.
are bound to the corresponding identifier. Otherwise, lambda-
list must be a rest-list. In this case, each identifier preceding the lambda-list: The parameter list of the function con-
dot is bound to the corresponding argument and the identifier forming to the syntax specified under lambda.
succeeding the dot is bound to a newly allocated list whose
elements are the remaining arguments. These bindings have body: A sequence of forms.

lexical scope and indefinite extent. It is a violation if the same
identifier appears more than once in a lambda-list. It is an error Remarks

to modify rest-list. The defun form defines a function named by function-name

and stores the definition (i) as the top-lexical binding of
function-name or (ii) as the setter function of function-name.

12.2.2 defsyntax defining operator The interpretation of the lambda-list is as defined for lambda.
12.2.2.1 Syntax 12.2.3.2 Rewrite Rules
defsyntax-form: — <function> (defun identifier = (defconstant identifier
(defsyntax syntaz-operator-name lambda-list body|) lambda-list (lambda lambda-list
syntaz-operator-name: body) body))
identifier
(defun = ((setter setter)
(setter identifier) identifier
Arguments lambda-list (lambda lambda-list
syntaz-operator-name: A symbol naming an im- body) body))

mutable top-lexical binding to be initialized with
a function having the specified lambda-list and

body.
00y 12.2.4 function call syntax
lambda-list: The parameter list of the function con-
forming to the syntax specified under lambda. 12.2.4.1 Syntax

function-call-form: — <object>

body: A sequence of forms. "
(operator operand”)

operator:
Remarks identifier
The defsyntax form defines a syntax operator named by operand:
syntaz-operator-name and stores the definition as the top- identifier
lexical binding of syntaz-operator-name . The interpretation of literal
the lambda-list is as defined for lambda (see 12.2.1.1). special-form

function-call-form

22

Version 0.991

Arguments
operator: This may be a symbol—being either the
name of a special form, or a lexical variable—or
a function call, which must result in an instance
of <function>.

An error is signalled (condition class:
<invalid-operator>) if the operator is
not a function.

operand” : Each operand must be either an identifier,
a literal, a special-form or a function-call-form.

Result

The result is the value of the application of operator to the
evaluation of operand”.

Remarks

The operand expressions are evaluated in order from left to
right. The operator expression may be evaluated at any time
before, during or after the evaluation of the operands.

NOTE 2 The above rule for the evaluation of function calls was
finally agreed upon for this version since it is in line with one strand
of common practice, but it may be revised in a future version.

See also

constant, symbol, quote.

12.2.5 <invalid-operator>

<general-condition> condition

Initialization Options

invalid-operator object: The object which was be-
ing used as an operator.

operand-list list: The operands prepared for the
operator.

Remarks

Signalled by function call if the operator is not an instance of
<function>.

12.2.6 function

apply

12.2.6.1 Syntax

apply-form: — <object>

(apply function body)
function:

level-0-form

Arguments

function: A form which must evaluate to an instance
of <function>.

forma ... formn_1: A sequence of expressions, which
will be evaluated according to the rules given in
function-call-form.

formy, : An expression which must evaluate to a
proper list. It is an error if obj, is not a proper
list.

Programming Language EuLisp:2010(E)

Result

The result is the result of calling function with the actual pa-
rameter list created by appending form, to a list of the argu-
ments formi through form,—_i. An error is signalled (condition
class: <invalid-operator>) if the first argument is not an in-
stance of <function>.

See also

function-call-form, <invalid-operator>.
12.3 Destructive Operations

An assignment operation modifies the contents of a binding
named by a identifier—that is, a variable.

12.3.1 setq special operator

12.3.1.1 Syntax

setg-form: — <object>
(setq identifier form)

Arguments

identifier: The identifier whose lexical binding is to
be updated.

form: An expression whose value is to be stored in
the binding of identifier.

Result
The result is the value of form.

Remarks

The form is evaluated and the result is stored in the closest
lexical binding named by identifier. It is a violation to modify
an immutable binding.

12.3.2 setter function

Arguments

reader: An expression which must evaluate to an in-
stance of <function>.

Result
The writer corresponding to reader.

Remarks

A generalized place update facility is provided by setter.
Given reader, setter returns the corresponding update func-
tion. If no such function is known to setter, an error is sig-
nalled (condition class: <no-setter>). Thus (setter car)
returns the function to update the car of a pair. New up-
date functions can be added by using setter’s update function,
which is accessed by the expression (setter setter). Thus
((setter setter) a-reader a-writer) installs the function
which is the value of a-writer as the writer of the reader
function which is the value of a-reader. All writer func-
tions in this definition and user-defined writers have the same
immutable status as other standard functions, such that at-
tempting to redefine such a function, for example ((setter
setter) car a-new-value), signals an error (condition class:
<cannot-update-setter>)

23

Programming Language EuLisp:2010(E)

See also

defgeneric, defmethod, defclass, defun.

12.3.3 <no-setter> <general-condition> condition

Initialization Options

object object: The object given to setter.

Remarks

Signalled by setter if there is no updater for the given func-
tion.

12.3.4 <cannot-update-setter>

<general-condition> condition

Initialization Options

accessor object; : The given accessor object.

updater objecty : The given updater object.

Remarks

Signalled by (setter setter) if the updater of the given ac-
cessor is immutable.

See also

setter.

12.4 Conditional Expressions

12.4.1 if special operator

12.4.1.1

if-form: — <object>

(if antecedent

consequent

alternative)
antecedent:
form
consequent:
form
alternative:
form

Syntax

Result

Either the value of consequent or alternative depending on the
value of antecedent.

Remarks

The antecedent is evaluated. If the result is t the consequent
is evaluated, otherwise the alternative is evaluated. Both con-
sequent and alternative must be specified. The result of if
is the result of the evaluation of whichever of consequent or
alternative is chosen.

12.4.2 cond special operator

24

Version 0.991

12.4.2.1 Syntax

cond-form: — <object>
(cond
{(antecedent consequent™)}*)

Remarks

The cond syntax operator provides a convenient syntax for col-
lections of if-then-elseif...else expressions.

12.4.2.2

Rewrite Rules

(cond)
(cond (antecedent)

)

0

(or antecedent (cond ...))

(con (or antecedenty
(antecedenty) (cond
(antecedenty consequent™) (antecedenty

consequent™)

)

(if antecedent;
(progn consequent™)
(cond
(antecedents
consequent™)

)

(cond
(antecedent; consequent”)
(antecedenty consequent™)

12.4.3 else <symbol> constant

Remarks

This may be used to denote the default clause in cond and case
forms and has the value t, i.e. it is an alias for t introduced to
improve readability of the cond and case forms.

12.4.4 when special operator

12.4.4.1 Syntax

when-form: — <object>
(when antecedent
consequent)

Result

The antecedent is evaluated and if the result is t the consequent
is evaluated and returned otherwise () is returned.

12.4.4.2

Rewrite Rules

(when antecedent = (if antecedent

consequent) consequent
0)
12.4.5 unless special operator
12.4.5.1 Syntax

unless-form: — <object>
(unless antecedent
consequent)

Version 0.991

Result

The antecedent is evaluated and if the result is () the conse-
quent is evaluated and returned otherwise () is returned.

12.4.5.2

Rewrite Rules

(unless antecedent = (if antecedent
consequent) 0
consequent)

12.4.6 and special operator

12.4.6.1 Syntax

and-form: — <object>
(and consequent™)

Remarks

The expansion of an and form leads to the evaluation of the
sequence of forms from left to right. The first form in the
sequence that evaluates to () stops evaluation and none of the
forms to its right will be evaluated—that is to say, it is non-
strict. The result of (and) is t. If none of the forms evaluate
to (), the value of the last form is returned.

12.4.6.2 Rewrite Rules
(and) =t
(and form) = form
(and formi formg ...) = (if formy

(and formsz ...)

0)

12.4.7 or special operator
12.4.7.1 Syntax
or-form: — <object>

(or form™)

Remarks

The expansion of an or form leads to the evaluation of the
sequence of forms from left to right. The value of the first
form that evaluates to t is the result of the or form and none
of the forms to its right will be evaluated—that is to say, it is
non-strict. If none of the forms evaluate to t, the value of the
last form is returned.

12.4.7.2 Rewrite Rules
(or) = ()
(or form) = form
(or forma formg ...) = (let ((x formi))
(if x
X

(or formg ...)))

Note that x does not occur free in any of forms ... form,.

12.5 Variable Binding and Sequences

12.5.1 1let/cc special operator

Programming Language EuLisp:2010(E)

12.5.1.1 Syntax

let/cc-form: — <object>
(let/cc identifier body)

Arguments

identifier: To be bound to the continuation of the
let/cc form.

body: A sequence of forms to evaluate.

Result

The result of evaluating the last form in body or the value of
the argument given to the continuation bound to identifier.

Remarks

The identifier is bound to a new location, which is initialized
with the continuation of the let/cc form. This binding is im-
mutable and has lexical scope and indefinite extent. Each form
in body is evaluated in order in the environment extended by
the above binding. It is an error to call the continuation outside
the dynamic extent of the let/cc form that created it. The
continuation is a function of one argument. Calling the con-
tinuation causes the restoration of the lexical environment and
dynamic environment that existed before entering the let/cc
form.

Examples

An example of the use of let/cc is given in example 1. The
function path-open takes a list of paths, the name of a file
and list of options to pass to open. It tries to open the file
by appending the name to each path in turn. Each time open
fails, it signals a condition that the file was not found which is
trapped by the handler function. That calls the continuation
bound to fail to cause it to try the next path in the list. When
open does find a file, the continuation bound to succeed is
called with the stream as its argument, which is subsequently
returned to the caller of path-open. If the path list is ex-
hausted, map (section 16.2) terminates and an error (condition
class: <cannot-open-path>) is signalled.

Example 1 — using let/cc

(defun path-open (pathlist name .
(let/cc succeed
(map
(lambda (path)
(let/cc fail
(with-handler
(lambda (condition resume) (fail ()))
(succeed
(apply open
(format () "“a/"a" path name)
options)))))
pathlist)
(error
(format ()
"Cannot open stream for (“a) ~a"
pathlist name)
<cannot-open-path>)))

options)

See also

block, return-from.

12.5.2 block special operator

25

Programming Language EuLisp:2010(E)

12.5.2.1 Syntax

block-form: — <object>
(block identifier body)

Remarks

The block expression is used to establish a statically scoped
binding of an escape function. The block identifier is bound
to the continuation of the block. The continuation can be
invoked anywhere within the block by using return-from. The
forms are evaluated in sequence and the value of the last one
is returned as the value of the block form. See also let/cc.

12.5.2.2 Rewrite Rules

(block identifier) = ()

(block identifier = (let/cc identifier
body) body)

The rewrite for block does not prevent the block being ex-
ited from anywhere in its dynamic extent, since the function
bound to identifier is a first-class item and can be passed as an
argument like other values.

See also

return-from.

12.5.3 return-from special operator

12.5.3.1 Syntax

return-from-form: — <object>
(return-from identifier formep:)

Remarks

In return-from, the identifier names the continuation of the
(lexical) block from which to return. return-from is the in-
vocation of the continuation of the block named by identifier.
The form is evaluated and the value is returned as the value of
the block named by identifier.

12.5.3.2

Rewrite Rules

(identifier ())
(identifier form)

(return-from identifier)
(return-from
identifier form)

See also
block.

12.5.4 1letfuns special operator

12.5.4.1 Syntax

letfuns-form: — <object>
(letfuns
(function-definition™)
letfuns-body)
function-definition:
(identifier lambda-list body)
letfuns-body:
form™

26

Version 0.991

Arguments
identifier: A symbol naming a new inner-lexical bind-
ing to be initialized with the function having the
lambda-list and body specified.

lambda-list: The parameter list of the function con-
forming to the syntax specified below.

body: A sequence of forms.

letfuns-body: A sequence of forms.

Result

The letfuns operator provides for local mutually recursive
function creation. Each identifier is bound to a new inner-
lexical binding initialized with the function constructed from
lambda-list and body. The scope of the identifiers is the entire
letfuns form. The lambda-list is either a single variable or a
list of variables—see lambda. Each form in letfuns-body is eval-
uated in order in the lexical environment extended with the
bindings of the identifiers. The result of evaluating the last
form in letfuns-body is returned as the result of the letfuns
form.

12.5.5 1let special operator

12.5.5.1 Syntax

let-form: — <object>
(let identifierop (binding™)
body)
binding:
variable
(wvariable form)
variable:
identifier var:
variable

Remarks

The optional identifier denotes that the let form can be called
from within its body. This is an abbreviation for letfuns form
in which identifier is bound to a function whose parameters are
the identifiers of the bindings of the let, whose body is that of
the let and whose initial call passes the values of the initial-
izing form of the bindings. A binding is specified by either an
identifier or a two element list of an identifier and an initializing
form. All the initializing forms are evaluated in order from left
to right in the current environment and the variables named
by the identifiers in the bindings are bound to new locations
holding the results. Each form in body is evaluated in order in
the environment extended by the above bindings. The result
of evaluating the last form in body is returned as the result of
the let form.

12.5.5.2

Rewrite Rules

(Let () body) (progn body)

(Let ((vary forma) ((1ambda (var: vare vars ...)
(vary formsg) body)
vars forma formg () ...)
body)
(let varg = (letfuns
((var1 forma) ((varg (vary vars ...)
vary body))
.) (varg forma () ...))
body)

Version 0.991

12.5.6 let* special operator

12.5.6.1 Syntax

let-star-form: — <object>
(let* (binding")
body)

Remarks

A binding is specified by a two element list of a variable and
an initializing form. The first initializing form is evaluated
in the current environment and the corresponding variable is
bound to a new location containing that result. Subsequent
bindings are processed in turn, evaluating the initializing form
in the environment extended by the previous binding. Each
form in body is evaluated in order in the environment extended
by the above bindings. The result of evaluating the last form
is returned as the result of the let* form.

12.5.6.2 Rewrite Rules

(progn body)
(Let ((vary forma))
(Let* ((vary formsa)
vars

(Let* () body) =

(Let* ((vary form) =
(vare forms)
vars

body) body))

12.5.7 progn special operator

12.5.7.1 Syntax

progn-form: — <object>
(progn body)

Arguments

form™: A sequence of forms and in certain circum-
stances, defining forms.

Result

The sequence of forms is evaluated from left to right, returning
the value of the last one as the result of the progn form. If the
sequence of forms is empty, progn returns ().

Remarks

If the progn form occurs enclosed only by progn forms and a
defmodule form, then the forms within the progn can be defin-
ing forms, since they appear in the top-lexical environment. It
is a violation for defining forms to appear in inner-lexical en-
vironments.

12.5.8 unwind-protect special operator

12.5.8.1 Syntax

unwind-protect-form: — <object>
(unwind-protect protected-form
after-form™)
protected-form:
form
after-form:
form

Programming Language EuLisp:2010(E)

Arguments

protected-form: A form.

after-form™ : A sequence of forms.

Result
The value of protected-form.

Remarks

form and then each of after-forms in order, returning the value
of protected-form as the result of unwind-protect. A non-local
exit from the dynamic extent of protected-form, which can be
caused by processing a non-local exit form, will cause each of
after-forms to be processed before control goes to the contin-
uation specified in the non-local exit form. The after-forms
are not protected in any way by the current unwind-protect.
Should any kind of non-local exit occur during the processing of
the after-forms, the after-forms being processed are not reen-
tered. Instead, control is transferred to wherever specified by
the new non-local exit but the after-forms of any intervening
unwind-protects between the dynamic extent of the target of
control transfer and the current unwind-protect are evaluated
in increasing order of dynamic extent.

Examples

Example 2 — Interaction of unwind-protect with
non-local exits

(progn
(let/cc ki1
(letfuns
((Loop
(let/cc k2
(unwind-protect (k1 10) (k2 99))
;3 continuation bound to k2
(loop))))
(Loop)))
;3 continuation bound to ki1

L)

The code fragment in example 2 illustrates both the use of
unwind-protect and of a difference between the semantics of
EULISP and some other Lisps. Stepping through the evaluation
of this form: k1 is bound to the continuation of its let/cc
form; a recursive function named loop is constructed, loop is
called from the body of the letfuns form; k2 is bound to the
continuation of its let/cc form; unwind-protect calls k1; the
after forms of unwind-protect are evaluated in order; k2 is
called; loop is called; etc.. This program loops indefinitely.

12.6 Quasiquotation Expressions

12.6.1 quasiquote special operator

12.6.1.1 Syntax

quasiquote-form: — <object>
(quasiquote skeleton)
¢ skeleton

skeleton:
form

Remarks

Quasiquotation is also known as backquoting. A quasiquoted
expression is a convenient way of building a structure. The

27

Programming Language EuLisp:2010(E)

skeleton describes the shape and, generally, many of the en-
tries in the structure but some holes remain to be filled. The
quasiquote syntax operator can be abbreviated by using the
glyph called grave accent (¢) , so that (quasiquote skeleton)
can be written ‘skeleton.

12.6.2 syntax

Remarks

See quasiquote.

12.6.3 wunquote special operator

12.6.3.1 Syntax

unquote-form: — <object>
(unquote form)
, form

Remarks

See unquote-splicing.

12.6.4 , syntax

Remarks

See unquote.

12.6.5 wunquote-splicing spectal operator

12.6.5.1 Syntax

unquote-splicing-form: — <object>
(unquote-splicing form)
,@form

Remarks

The holes in a quasiquoted expression are identified by un-
quote expressions of which there are two kinds—forms whose
value is to be inserted at that location in the structure and
forms whose value is to be spliced into the structure at that
location. The former is indicated by an unquote expres-
sion and the latter by an unquote-splicing expression. In
unquote-splicing the form must result in a proper list. The
insertion of the result of an unquote-splice expression is as if
the opening and closing parentheses of the list are removed
and all the elements of the list are appended in place of the
unquote-splice expression.

The syntax forms unquote and unquote-splicing can be ab-
breviated respectively by using the glyph called comma (,)
preceding an expression and by using the diphthong comma fol-
lowed by the glyph called commercial at (,@) preceding a form.
Thus, (unquote a) may be written ,a and (unquote-splicing
a) can be written ,@a.

Examples

‘(a ,(list 1 2) B) — (a (1 2) b)
‘(a ,e(list 1 2) b) — (a12b)

12.6.6 ,0@ syntax

28

Version 0.991

Remarks

See unquote-splicing.

12.7 Summary of Level-0 Defining, Special and
Function-call Forms

This section gives the syntax of the character-set, comments
and all level-O0 forms starting with modules. The syntax of
data objects is given in the section pertaining to the class and
is summarized in section 16.20.

decimal-digit: one of
0123456789
upper-letter: one of

ABCDEFGHIJKLM

NOPQRSTUVWIXYZ
lower-letter: one of

abcdefghijklm

nopqrstuvwxyz
letter:

upper-letter

lower-letter
normal-other-character: one of

x / < =
other-character:

no¥mal-other-character
special-character: one of

;2 \N"# () ‘e
level-0-character:

decimal-digit

letter

other-character

special-character
whitespace:

space

newline

line-feed

return

tab

vertical-tab

form-feed
comment:

;all subsequent characters

up to the end of the line
#; whitespace” object

> + .

Version 0.991

12.7.1 Syntax of Level-0 modules

defmodule-0-form:

(defmodule module-name
module-directives
level-0-module-form™)

module-name:

identifier

module-directives:

(module-directive™)

module-directive:

export (identifier”)

expose (module-descriptor”)

import (module-descriptor”)

syntax (module-descriptor™)
level-0-module-form:

(export identifier”)

level-0-form

defining-0-form

(progn level-0-module-form™)

module-descriptor:

module-name

module-filter

module-filter:

(except (identifier™) module-descriptor)
(only (identifier”) module-descriptor)
(rename (rename-pair™) module-descriptor)

reEnaMe-pair:

(identifier identifier)
level-0-form:

identifier

literal

special-0-form

function-call-form
form:

level-0-form
special-form:

special-0-form

Programming Language EuLisp:2010(E)

12.7.2 Syntax of Level-0 defining forms

defining-0-form:
defclass-form
defcondition-form
defconstant-form
deflocal-form
defgeneric-form
defsyntax-form
defun-form

defclass-form:
(defclass class-name superclass-name

(slot™) class-option™)

class-name:

identifier
superclass-name:

identifier
slot:

slot-name

(slot-name slot-option™)
slot-name:

identifier

slot-option:

keyword: identifier

default: level-0-form

reader: identifier

writer: identifier

accessor: identifier

required?: boolean
class-option:

keywords: (identifier”)

constructor: constructor-specification

predicate: identifier

abstract?: boolean
constructor-specification:

(udentifier identifier”)
inatlist:

{identifier object}”
defgeneric-form:

(defgeneric gf-name gf-lambda-list

level-0-init-option)

gf-name:

identifier
gf-lambda-list:

specialized-lambda-list
level-0-init-option:

method method-description
method-description:

(specialized-lambda-list form™)
specialized-lambda-list:

(specialized-parametert {. identifier}opt)

specialized-parameter:
(identifier class-name)
identifier
defmethod-form:
(defmethod gf-locator
specialized-lambda-list
body)
gf-locator:
identifier
(setter identifier)
(converter identifier)
defconstant-form: — <object>
(defconstant constant-name form)
constant-name:
identifier
deflocal-form: — <object>
(deflocal local-name form)
local-name:
identifier

29

Programming Language EuLisp:2010(E) Version 0.991

defsyntax-form: — <function> if-form: — <object>
(defsyntax syntaz-operator-name lambda-list body) (if antecedent
syntaz-operator-name: consequent
identifier alternative)
defun-form: — <function> antecedent:
simple-defun form
setter-defun consequent:
simple-defun: form
(defun function-name lambda-list alternative:
body) form
setter-defun:
(defun (setter function-name) lambda-list cond-form: — <object>
body) (cond
function-name: {(antecedent consequent™)}*)
identifier when-form: — <object>

(when antecedent
12.7.3 Syntax of Level-0 special forms consequent)

special-0-form: unless-form: — <object>

defmethod-form (unless antecedent
generic-lambda-form consequent)
quote-form

lambda-form and-form: — <object>
setq-form (and consequent™)
if-form or-form: — <object>
let/cc-form (or form™)
letfuns-form let/cc-form: — <object>
progn-form (let/cc identifier body)
unwind-protect-form letfuns-form: — <object>
quasiquote-form (letfuns

unquote-form (function-definition™)
unquote-splicing-form letfuns-body)
call-next-handler-form function-definition:
with-handler-form (identifier lambda-list body)
cond-form letfuns-body:

and-form form*

or-form progn-form: — <object>
block—form (progn body)

return-from-form unwind-protect-form: — <object>
let-form (unwind-protect protected-form
let-star-form after-form™)
wz‘th-mput—ﬁle—form protected-form:

with-output-file-form

' form
with-source-form after-form:
with-sink-form form

generic—lambda—form: . apply-form: — <object>
C meric-Lubds gflombin o o ooy o iy
-t unction:
lambda-form: — <function> level-0-form
(lambda lambda-list body)

lambda-list: block-form: — <object>

id;nt;f?;t (block identifier body)
vmp e return-from-form: — <object>
rest-list

simple-list: (return-from identifier formep:)

. ok let-form: — <object>
dent
rest—list(: identifier”) (let iddentifierop: (binding”)
(identifier™ . identifier) . body)
body: binding:
* variable
form (wvariable form)

quote-form: — object

. variable:
’(ogF;Ee object) identifier var:
J variable

setq-form: — <object>

(setq identifier form) let-star-form: — <object>

(letx (binding”)
body)

30

Version 0.991

quasiquote-form: — <object>
(quasiquote skeleton)
¢ skeleton
skeleton:
form
unquote-form: — <object>
(unquote form)
, form
unquote-splicing-form: — <object>
(unquote-splicing form)
,@form

12.7.4 Syntax of Level-0 function calls

function-call-form: — <object>
(operator operand”)
operator:
identifier
operand:
identifier
literal
special-form
function-call-form

Programming Language EuLisp:2010(E)

12.8 Conditions
The defined name of this module is condition.

The condition system was influenced by the Common Lisp er-
ror system [16] and the Standard ML exception mechanism. It
is a simplification of the former and an extension of the latter.
Following standard practice, this text defines the actions of
functions in terms of their normal behaviour. Where an excep-
tional behaviour might arise, this has been defined in terms of
a condition. However, not all exceptional situations are errors.
Following Pitman, we use condition to be a kind of occasion in
a program when an exceptional situation has been signalled.
An error is a kind of condition—error and condition are also
used as terms for the objects that represent exceptional situ-
ations. A condition can be signalled continuably by passing a
continuation for the resumption to signal. If a continuation is
not supplied then the condition cannot be continued.

These two categories are characterized as follows:

a) A condition might be signalled when some limit has been
transgressed and some corrective action is needed before
processing can resume. For example, memory zone ex-
haustion on attempting to heap-allocate an item can be
corrected by calling the memory management scheme to
recover dead space. However, if no space was recovered a
new kind of condition has arisen. Another example arises
in the use of IEEE floating point arithmetic, where a con-
dition might be signalled to indicate divergence of an op-
eration. A condition should be signalled continuably when
there is a strategy for recovery from the condition.

b) Alternatively, a condition might be signalled when some
catastrophic situation is recognized, such as the memory
manager being unable to allocate more memory or un-
able to recover sufficient memory from that already allo-
cated. A condition should be signalled non-continuably
when there is no reasonable way to resume processing.

A condition class is defined using defcondition (see § 13).
The definition of a condition causes the creation of a new
class of condition. A condition is signalled using the func-
tion signal, which has two required arguments and one op-
tional argument: an instance of a condition, a resume continu-
ation or the empty list—the latter signifying a non-continuable
signal—and a thread. A condition can be handled using the
special form with-handler, which takes a function—the han-
dler function—and a sequence of forms to be protected. The
initial condition class hierarchy is shown in table 2.

13 Condition Classes

13.0.1 defcondition defining operator

13.0.1.1 Syntax

defcondition-form:
(defcondition condition-class-name
condition-superclass-name
(slot*) class-option™)
condition-class-name:
identifier
condition-superclass-name:
identifier

Arguments

condition-class-name: A symbol naming a binding to
be initialized with the new condition class.

31

Programming Language EuLisp:2010(E)

Table 2 — Condition class hierarchy

<condition>
<general-condition>
<invalid-operator>
<cannot-update-setter>
<no-setter>
<environment-condition>
<arithmetic-condition>
<division-by-zero>
<conversion-condition>
<no-converter>
<stream-condition>
<end-of-stream>
<read-error>
<thread-condition>
<thread-already-started>
<wrong-thread-continuation>
<wrong-condition-class>
<telos-condition>
<no-next-method>
<generic-function-condition>
<non-congruent-lambda-lists>
<incompatible-method-domain>
<no-applicable-method>
<method-domain-clash>

condition-superclass-name: A symbol naming a bind-
ing of a class to be used as the superclass of the
new condition class.

slot: Either a slot-name or a list of slot-name followed
by some slot-options.

class-option: A key and a value which, taken to-
gether, apply to the condition as a whole.

Remarks

This defining form defines a new condition class, it is anal-
ogous to defclass except in the in the specification of and
default superclass. The first argument is the name to which
the new condition class will be bound, the second is the name
of the superclass of the new condition class. If superclass-name
is (), the superclass is taken to be <condition>. Otherwise
superclass-name must be <condition> or the name of one of
its subclasses.

13.0.2 <condition> <object> class

Initialization Options

message <string>: A string, containing information
which should pertain to the situation which
caused the condition to be signalled.

Remarks
The class which is the superclass of all condition classes.

13.0.3 condition? function

Version 0.991

Result
Returns object if it is a condition, otherwise ().

13.0.4 initialize <condition> method

Specialized Arguments
condition <condition>: a condition.

inatlist: A list of initialization options as follows:
message <string>: A string, contain-
ing information which should per-
tain to the situation which caused

the condition to be signalled.

message-arguments <list>: A list of
objects to be used in processing the
message format string.

Result
A new, initialized condition.

Remarks

First calls call-next-method to carry out initialization speci-
fied by superclasses then does the <condition> specific initial-
ization.

13.0.5 <general-condition> <condition> condition

This is the general condition class for conditions arising from
the execution of programs by the processor.

13.0.6 <domain-condition>

<general-condition> condition

Initialization Options
argument <object>: An argument, which was not of
the expected class, or outside a defined range and
therefore lead to the signalling of this condition.

13.0.7 <range-condition>

<general-condition> condition

Initialization Options
result <object>: A result, which was not of the ex-

pected class, or outside a defined range and there-
fore lead to the signalling of this condition.

13.0.8 <environment-condition>

<condition> condition

This is the general condition class for conditions arising from
the environment of the processor.

13.0.9 <wrong-condition-class>

<thread-condition> condition

Arguments

object: An object to examine.

32

Initialization Options

condition condition: A condition.

Version 0.991

Signalled by signal if the given condition is not an instance of
the condition class <thread-condition>.

13.0.10 <generic-function-condition>

<condition> condition

This is the general condition class for conditions arising from
operations in the object system at level 0. The following direct
subclasses of <generic-function-condition> are defined at
level 0:

<no-applicable-method>: signalled by a generic
function when there is no method which is ap-
plicable to the arguments.

<incompatible-method-domain>: signalled by if the
domain of the method being added to a generic
function is not a subdomain of the generic func-
tion’s domain.

<non-congruent-lambda-lists>: signalled if the
lambda list of the method being added to a
generic function is not congruent to that of the
generic function.

<method-domain-clash>: signalled if the method be-
ing added to a generic function has the same do-
main as a method already attached to the generic
function.

<no-next-method>: signalled by call-next-method if
there is no next most specific method.

13.0.11 <no-applicable-method>

<generic-function-condition> condition

Initialization Options

generic function: The generic function which was
applied.

arguments list: The arguments of the generic func-
tion which was applied.

Remarks

Signalled by a generic function when there is no method which
is applicable to the arguments.

13.0.12 <incompatible-method-domain>

<generic-function-condition> condition

Initialization Options

generic function: The generic function to be ex-
tended.

method method: The method to be added.

Remarks

Signalled by one of defgeneric, defmethod or generic-lambda
if the domain of the method would not be a subdomain of the
generic function’s domain.

13.0.13 <non-congruent-lambda-lists>

<generic-function-condition> condition

Programming Language EuLisp:2010(E)

Initialization Options

generic function: The generic function to be ex-
tended.

method method: The method to be added.

Remarks

Signalled by one of defgeneric, defmethod or generic-lambda
if the lambda list of the method is not congruent to that of the
generic function.

13.0.14 <method-domain-clash>

<generic-function-condition> condition

Initialization Options

generic function: The generic function to be ex-
tended.

methods list: The methods with the same domain.

Remarks

Signalled by one of defgeneric, defmethod or generic-lambda
if there would be methods with the same domain attached to
the generic function.

13.0.15 <no-next-method>

<generic-function-condition> condition

Initialization Options

method method: The
call-next-method.

method which called

operand-list list: A list of the arguments to have
been passed to the next method.

Remarks

Signalled by call-next-method if there is no next most specific
method.

14 Condition Signalling and Handling

Conditions are handled with a function called a handler . Han-
dlers are established dynamically and have dynamic scope and
extent. Thus, when a condition is signalled, the processor will
call the dynamically closest handler. This can accept, resume
or decline the condition (see with-handler for a full discussion
and definition of this terminology). If it declines, then the next
dynamically closest handler is called, and so on, until a handler
accepts or resumes the condition. It is the first handler accept-
ing the condition that is used and this may not necessarily be
the most specific. Handlers are established by the special form
with-handler.

14.0.16 signal function

Arguments

condition: The condition to be signalled.
function: The function to be called if the condition

is handled and resumed, that is to say, the con-
dition is continuable, or () otherwise.

33

Programming Language EuLisp:2010(E)

threadop: : If this argument is not supplied, the con-
dition is signalled on the thread which called
signal, otherwise, thread indicates the thread on
which condition is to be signalled.

Result

signal should never return.
continuation.

It is an error to call signal’s

Remarks

Called to indicate that a specified condition has arisen during
the execution of a program. If the third argument is not sup-
plied, signal calls the dynamically closest handler with condi-
tion and continuation. If the second argument is a subclass of
function, it is the resume continuation to be used in the case
of a handler deciding to resume from a continuable condition.
If the second argument is (), it indicates that the condition
was signalled as a non-continuable condition—in this way the
handler is informed of the signaler’s intention.

If the third argument is supplied, signal registers the
specified condition to be signalled on thread. The
condition must be an instance of the condition -class
<thread-condition>, otherwise an error is signalled (condi-
tion class: <wrong-condition-class>) on the thread calling
signal. A signal on a determined thread has no effect on
either the signalled or signalling thread except in the case of
the above error.

See also

thread-reschedule, thread-value, with-handler.

14.0.17 call-next-handler special operator

14.0.17.1 Syntax

call-next-handler-form:
(call-next-handler)

Remarks

The call-next-handler special form calls the next enclosing
handler. It is an error to evaluate this form other than within
an established handler function. The call-next-handler spe-
cial form is normally used when a handler function does not
know how to deal with the class of condition. However, it may
also be used to combine handler function behaviour in a similar
but orthogonal way to call-next-method (assuming a generic
handler function).

14.0.18 with-handler special operator

14.0.18.1 Syntax

with-handler-form:
(with-handler handler-function
form™)
handler-function:
level-0-form

Arguments

handler-function: The result of evaluating the han-
dler function expression must be either a func-
tion or a generic function. This function will
be called if a condition is signalled during the
dynamic extent of protected-forms and there are

34

Version 0.991

no intervening handler functions which accept or
resume the condition. A handler function takes
two arguments: a condition, and a resume func-
tion/continuation. The condition is the condi-
tion object that was passed to signal as its first
argument. The resume continuation is the con-
tinuation (or ()) that was given to signal as its
second argument.

forms: The sequence of forms whose execution is pro-
tected by the handler function specified above.

Result
The value of the last form in the sequence of forms.

Remarks
A with-handler form is evaluated in three steps:

a) The new handler-function is evaluated. This now identifies
the nearest enclosing handler and shadows the previous
nearest enclosing handler.

b) The sequence of forms is evaluated in order and the
value of the last one is returned as the result of the
with-handler expression.

c) the handler-function is disestablished as the nearest en-
closing handler, and the previous handler function is re-
stored as the nearest enclosing.

The above is the normal behaviour of with-handler. The ex-
ceptional behaviour of with-handler happens when there is a
call to signal during the evaluation of protected-form. signal
calls the nearest closing handler-function passing on the first
two arguments given to signal. The handler-function is exe-
cuted in the dynamic extent of the call to signal. However, any
signals occurring during the execution of handler-function are
dealt with by the nearest enclosing handler outside the extent
of the form which established handler-function. It is an error
if there is no enclosing handler. In this circumstance the iden-
tified error is delivered to the configuration to be dealt with in
an implementation-defined way. Errors arising in the dynamic
extent of the handler function are signalled in the dynamic ex-
tent of the original signal but are handled in the enclosing
dynamic extent of the handler.

Examples

There are three ways in which a handler-function can respond:
actions:

a) The error is very serious and the computation must be
abandoned; this is likely to be characterised by a non-local
exit from the handler function.

b) The situation can be corrected by the handler, so it does
and then returns. Thus the call to signal returns with
the result passed back from the handler function.

¢) The handler function does not know how to deal with
the class of condition signalled; control is passed explicitly

to the next enclosing handler via the call-next-handler
special form.

An illustration of the use of all three cases is given here:

Example 1 — handler actions

(defgeneric error-handler (condition)
method: (((c <serious-error>))

Version 0.991

abort thread ...)
<fixable-situation>))

apply fix and return ...)
<condition>) (call-next-handler))))

method: (((c
method: (((c
(with-handler error-handler

;3 the protected expression
(something-which-might-signal-an-error))

See also

signal.

14.0.19 error function

Arguments

condition-class: the class of condition to be signalled.

error-message: a string containing relevant informa-
tion.

init-option™ : a sequence of options to be passed to
initialize-instance when making the instance
of condition.

Result
The result is ().

Remarks

The error function signals a non-continuable error. It calls
signal with an instance of a condition of condition-class ini-
tialized fromthe error-message, init-options and a resume con-
tinuation value of (), signifying that the condition was not
signalled continuably.

14.0.20 cerror function

Arguments

condition-class: the class of condition to be signalled.

error-message: a string containing relevant informa-
tion.

init-option™ : a sequence of options to be passed to
initialize-instance when making the instance
of condition.

Result
The result is ().

Remarks

The cerror function signals a continuable error. It calls signal
with an instance of a condition of condition-class initialized
from the error-message, init-options and a resume continua-
tion value which is the continuation of the cerror expression.
A non-() resume continuation signifies that the condition has
been signalled continuably.

Programming Language EuLisp:2010(E)
15 Concurrency

The basic elements of parallel processing in EULISP are pro-
cesses and mutual exclusion, which are provided by the classes
<thread> and <lock> respectively.

A thread is allocated and initialized, by calling make. The key-
word of a thread specifies the initial function, which is where
execution starts the first time the thread is dispatched by the
scheduler. In this discussion four states of a thread are identi-
fied: new, running, aborted and finished. These are for concep-
tual purposes only and a EuLisp program cannot distinguish
between new and running or between aborted and finished.
(Although accessing the result of a thread would permit such a
distinction retrospectively, since an aborted thread will cause a
condition to be signalled on the accessing thread and a finished
thread will not.) In practice, the running state is likely to have
several internal states, but these distinctions and the informa-
tion about a thread’s current state can serve no useful purpose
to a running program, since the information may be incorrect
as soon as it is known. The initial state of a thread is new. The
union of the two final states is known as determined. Although
a program can find out whether a thread is determined or not
by means of wait with a timeout of t (denoting a poll), the
information is only useful if the thread has been determined.

A thread is made available for dispatch by starting it, using
the function thread-start, which changes its state from new
to running. After running a thread becomes either finished or
aborted. When a thread is finished, the result of the initial
function may be accessed using thread-value. If a thread is
aborted, which can only occur as a result of a signal handled by
the default handler (installed when the thread is created), then
thread-value will signal the condition that aborted the thread
on the thread accessing the value. Note that thread-value
suspends the calling thread if the thread whose result is sought
is not determined.

While a thread is running, its progress can be suspended
by accessing a lock, by a stream operation or by calling
thread-value on an undetermined thread. In each of these
cases, thread-reschedule is called to allow another thread to
execute. This function may also be called voluntarily. Progress
can resume when the lock becomes unlocked, the input/output
operation completes or the undetermined thread becomes de-
termined.

The actions of a thread can be influenced externally by signal.
This function registers a condition to be signalled no later than
when the specified thread is rescheduled for execution—when
thread-reschedule returns. The condition must be an in-
stance of <thread-condition>. Conditions are delivered to the
thread in order of receipt. This ordering requirement is only
important in the case of a thread sending more than one signal
to the same thread, but in other circumstances the delivery or-
der cannot be verified. A signal on a determined thread has
no discernable effect on either the signalled or signalling thread
unless the condition is not an instance of <thread-condition>,
in which case an error is signalled on the signalling thread. See
also § 12.8.

A lock is an abstract data type protecting a binary value which
denotes whether the lock is locked or unlocked. The operations
on a lock are lock and unlock. Executing a lock operation
will eventually give the calling thread exclusive control of a
lock. The unlock operation unlocks the lock so that either a
thread subsequently calling lock or one of the threads which
has already called lock on the lock can gain exclusive access.

NOTE 1 It is intended that implementations of locks based on

35

Programming Language EuLisp:2010(E)

spin-locks, semaphores or channels should all be capable of satisfying
the above description. However, to be a conforming implementation,
the use of a spin-lock must observe the fairness requirement, which
demands that between attempts to acquire the lock, control must be
ceded to the scheduler.

The programming model is that of concurrently executing
threads, regardless of whether the configuration is a multi-
processor or not, with some constraints and some weak fairness
guarantees.

a) A processor is free to use run-to-completion, timeslicing
and/or concurrent execution.

b) A conforming program must assume the possibility of con-
current execution of threads and will have the same seman-
tics in all cases—see discussion of fairness which follows.

¢) The default condition handler for a new thread, when in-
voked, will change the state of the thread to aborted, save
the signalled condition and reschedule the thread.

d) A continuation must only be called from within its dy-
namic extent. This does not include threads created
within the dynamic extent. An error is signalled (condi-
tion class: <wrong-thread-continuation>), if a continu-
ation is called on a thread other than the one on which it
was created.

e) The lexical environment (inner and top) associated with
the initial function may be shared, as is the top-dynamic
environment, but each thread has a distinct inner-dynamic
environment. In consequence, any modifications of bind-
ings in the lexical environment or in the top-dynamic
environment should be mediated by locks to avoid non-
deterministic behaviour.

f) The creation and starting of a thread represent changes to
the state of the processor and as such are not affected by
the processor’s handling of errors signalled subsequently
on the creating/starting thread (c.f. streams). That is to
say, a non-local exit to a point dynamically outside the
creation of the subsidiary thread has no default effect on
the subsidiary thread.

g) The behaviour of i/o on the same stream by multiple
threads is undefined unless it is mediated by explicit locks.

The parallel semantics are preserved on a sequential run-to-
completion implementation by requiring communication be-
tween threads to use only thread primitives and shared data
protected by locks—both the thread primitives and locks will
cause rescheduling, so other threads can be assumed to have a
chance of execution.

There is no guarantee about which thread is selected next.
However, a fairness guarantee is needed to provide the illusion
that every other thread is running. A strong guarantee would
ensure that every other thread gets scheduled before a thread
which reschedules itself is scheduled again. Such a scheme is
usually called “round-robin”. This could be stronger than the
guarantee provided by a parallel implementation or the sched-
uler of the host operating system and cannot be mandated in
this definition.

A weak but sufficient guarantee is that if any thread resched-
ules infinitely often then every other thread will be scheduled
infinitely often. Hence if a thread is waiting for shared data
to be changed by another thread and is using a lock, the other
thread is guaranteed to have the opportunity to change the
data. If it is not using a lock, the fairness guarantee ensures
that in the same scenario the following loop will exit eventually:

36

Version 0.991

(while (= data 0) (thread-reschedule))

15.1 Threads

The defined name of this module is thread. This section defines
the operations on threads.

15.1.1 <thread> <object> class

The class of all instances of <thread>.

Initialization Options
init-function fn: an instance of <function> which
will be called when the resulting thread is started
by thread-start.

15.1.2 thread? function

Arguments
object: An object to examine.

Result

The supplied argument if it is an instance of <thread>, other-
wise ().

15.1.3 thread-reschedule function

This function takes no arguments.

Result
The result is ().

Remarks

This function is called for side-effect only and may cause the
thread which calls it to be suspended, while other threads are
run. In addition, if the thread’s condition queue is not empty,
the first condition is removed from the queue and signalled
on the thread. The resume continuation of the signal will be
one which will eventually call the continuation of the call to
thread-reschedule.

See also

thread-value, signal and § 12.8 for details of conditions and
signalling.

15.1.4 current-thread function

This function takes no arguments.

Result
The thread on which current-thread was executed.

15.1.5 thread-start function

Version 0.991

Arguments

thread: the thread to be started, which must be new.
If thread is not new, an error is signalled (condi-
tion class: <thread-already-started>).

obji ...obj,: values to be passed as the arguments

to the initial function of thread.

Result
The thread which was supplied as the first argument.

Remarks

The state of thread is changed to running. The values obj
to obj, will be passed as arguments to the initial function of
thread.

15.1.6 thread-value function

Arguments

thread: the thread whose finished value is to be ac-
cessed.

Result

The result of the initial function applied to the arguments
passed from thread-start. However, if a condition is signalled
on thread which is handled by the default handler the condition
will now be signalled on the thread calling thread-value—that
is the condition will be propagated to the accessing thread.

Remarks

If thread is not determined, each thread calling thread-value
is suspended until thread is determined, when each will either
get the thread’s value or signal the condition.

See also

thread-reschedule, signal.

15.1.7 wait generic function

Generic Arguments

obj: An object.

timeout <object>: One of (), t or a non-negative
integer.

Result
Returns () if timeout was reached, otherwise a non-() value.

Remarks

wait provides a generic interface to operations which may
block. Execution of the current thread will continue beyond
the wait form only when one of the following happened:

a) A condition associated with obj returns t;

b) timeout time units elapse;

¢) A condition is raised by another thread on this thread.
wait returns () if timeout occurs, else it returns a non-nil value.

A timeout argument of () or zero denotes a polling operation.
A timeout argument of t denotes indefinite blocking (cases a or

Programming Language EuLisp:2010(E)

c above). A timeout argument of a non-negative integer denotes
the minimum number of time units before timeout. The num-
ber of time units in a second is given by the implementation-
defined constant ticks-per-second.

Examples

This code fragment copies characters from stream s to the cur-
rent output stream until no data is received on the stream for
a period of at least 1 second.

(letfuns
((Loop ()
(when (wait s (round ticks-per-second))
(print (read-char s))
(Loop))))
(loop))

See also
threads (section 15.1), streams (section 16.15).

15.1.8 wait <thread> method

Specialized Arguments
thread <thread>: The thread on which to wait.

timeout <object>: The timeout period which is
specified by one of (), t, and non-negative in-
teger.

Result

Result is either thread or (). If timeout is (), the result is
thread if it is determined. If timeout is t, thread suspends until
thread is determined and the result is guaranteed to be thread.
If timeout is a non-negative integer, the call blocks until either
thread is determined, in which case the result is thread, or un-
til the timeout period is reached, in which case the result is
(), whichever is the sooner. The units for the non-negative
integer timeout are the number of clock ticks to wait. The
implementation-defined constant ticks-per-second is used to
make timeout periods processor independent.

See also

wait and ticks-per-second (§ 12.8).

15.1.9 ticks-per-second <double-float> constant

The number of time units in a second expressed as a double
precision floating point number. This value is implementation-
defined.

15.1.10 <thread-condition> <condition> condition

Initialization Options

current-thread thread: The thread which is sig-
nalling the condition.

Remarks
This is the general condition class for all conditions arising

from thread operations.

37

Programming Language EuLisp:2010(E)

15.1.11 <wrong-thread-continuation>

<thread-condition> condition

Initialization Options

continuation continuation: A continuation.

thread thread: The thread on which continuation
was created.

Remarks

Signalled if the given continuation is called on a thread other
than the one on which it was created.

15.1.12 <thread-already-started>

<thread-condition> condition

Initialization Options
thread thread: A thread.

Remarks
Signalled by thread-start if the given thread has been started

already.
15.2 Locks

The defined name of this module is lock.

15.2.1 <lock> <object> class

The class of all instances of <lock>. This class has no init-
options. The result of calling make on <lock> is a new, open
lock.

15.2.2 lock? function

Arguments

object: An object to examine.

Result
The supplied argument if it is an instance of <lock>, otherwise

O.

15.2.3 1lock function

Arguments

lock: the lock to be acquired.

Result
The lock supplied as argument.

Remarks

Executing a <lock> operation will eventually give the call-
ing thread exclusive control of lock. A consequence of calling
<lock> is that a condition from another thread may be sig-
nalled on this thread. Such a condition will be signalled before
lock has been acquired, so a thread which does not handle the
condition will not lead to starvation; the condition will be sig-
nalled continuably so that the process of acquiring the lock
may continue after the condition has been handled.

38

Version 0.991

See also

unlock and § 12.8 for details of conditions and signalling.

15.2.4 unlock function

Arguments
lock: the lock to be released.

Result
The lock supplied as argument.

Remarks

The unlock operation unlocks lock so that either a thread sub-
sequently calling <lock> or one of the threads which has al-
ready called <lock> on the lock can gain exclusive access.

See also
<lock>.

15.2.5 <simple-thread> <thread> class

Place holder for <simple-thread> class.

16 Level-0 Module Library

This section describes the classes required at level-0 and the
operations defined on instances of those classes. The section is
organized by module in alphabetical order. These sub-sections
contain information about the predefined classes in EULISP that
are necessary to make the language usable.

16.1 Characters

The defined name of this module is character.

16.1.1 character syntax

Character literals are denoted by the extension glyph, called
hash (#), followed by the character-extension glyph, called re-
verse solidus (\), followed by the name of the character. The
syntax for the external representation of characters is defined
in syntax table 16.1.1.1. For most characters, their name is the
same as the glyph associated with the character, for example:
the character “a” has the name “a” and has the external rep-
resentation #\a. Certain characters in the group named special
(see table 9.1 and also syntax table 16.1.1.1) form the syntax
category special-character-token and are referred to using the
digrams defined in table 16.1. Any character which does not
have an external representation dealt with by cases described
so far is represented by the digram #\x (see table 16.1) fol-
lowed four hexadecimal digits. The value of the hexadecimal
number represents the position of the character in the current
character set. Examples of such character literals are #\x0000
and #\xabcd, which denote, respectively, the characters at po-
sition 0 and at position 43981 in the character set current at
the time of reading or writing. The syntax for the external
representation of characters is defined in syntax table 16.1.1.1
below:

Version 0.991

Table 3 — Character digrams

Operation Digram
alert \a
backspace \b
delete \d
formfeed \f
linefeed \1
newline \n
return \r
tab \t
vertical tab \v
hex-insertion \x
string delimiter \"
string escape A\
16.1.1.1 Syntax
character:

literal-character-token

special-character-token

numeric-character-token
literal-character-token:

#\letter

#\ decimal-digit

#\ other-character

#\ special-character
special-character-token:

#\\a

#\\b

#\\d

#\\£f

#\\1

#\\n

#\\r

#\\t

#\\v

#\\u

#\\\

numeric-character-token:
#\\x hexadecimal-digit hexadecimal-digit
hezadecimal-digit hexadecimal-digit

Programming Language EuLisp:2010(E)
characters <character>: A character.
Result

If character; is the same character as characters the result is
character;, otherwise the result is ().

16.1.5 binary< <character> method

Specialized Arguments

character; <character>: A character.

characters <character>: A character.

Result

If both characters denote uppercase alphabetic or both denote
lowercase alphabetic, the result is defined by alphabetical or-
der. If both characters denote a digit, the result is defined by
numerical order. In these three cases, if the comparison is t,
the result is character:, otherwise it is (). Any other compari-
son is an error and the result of such comparisons is undefined.

NOTE 1 This text refers to the “current character set” but defines
no means of selecting alternative character sets. This is to allow
for future extensions and implementation-defined extensions which
support more than one character set.

16.1.2 <character> <object> class

The class of all characters.

16.1.3 character? function

Arguments

object: Object to examine.

Result
Returns object if it is a character, otherwise ().

16.1.4 binary= <character> method

Specialized Arguments

character; <character>: A character.

Examples

(binary< #\A #\Z) = #\A
(binary< #\a #\z) = #\a
(binary< #\0 #\9) = #\0
(binary< #\A #\a) = undefined
(binary< #\A #\0) = wundefined
(binary< #\a #\0) = undefined
See also

Method binary< <string> for

16.1.6 <string> class

16.1.7 as-lowercase generic function

Generic Arguments

object <object>: An object to convert to lower case.

Result

An instance of the same class as object converted to lower case
according to the actions of the appropriate method for the class
of object.

See also

Another method as-lowercase <string> for <string>.

16.1.8 as-lowercase <character> method

Specialized Arguments

character <character>: A character.

Result

If character denotes an upper case character, a character de-
noting its lower case counterpart is returned. Otherwise the
result is the argument.

39

Programming Language EuLisp:2010(E)

16.1.9 as-uppercase generic function

Generic Arguments

object <object>: An object to convert to upper case.

Result

An instance of the same class as object converted to upper case
according to the actions of the appropriate method for the class
of object.

See also

Another method is defined on as-uppercase <string> for
<string>.

16.1.10 as-uppercase <character> method

Specialized Arguments

character <character>: A character.

Result

If character denotes an lower case character, a character de-
noting its upper case counterpart is returned. Otherwise the
result is the argument.

16.1.11 generic-print <character> method

Specialized Arguments

character <character>: Character to be ouptut on
stream.

stream <stream>: Stream on which character is to
be ouptut.

Result
The character character.

Remarks

Output the interpretation of character on stream.

Version 0.991
16.2 Collections

The defined name of this module is collection. A collection
is defined as an instance of one of <1ist>, <string>, <vector>,
<table> or any user-defined class for which a method is added
to any of the collection manipulation functions. Collection does
not name a class and does not form a part of the class hierarchy.
This module defines a set of operators on collections as generic
functions and default methods with the behaviours given here.

When iterating over a single collection, the order in which el-
ements are processed might not be important, but as soon as
more than one collection is involved, it is necessary to spec-
ify how the collections are aligned so that it is clear which
elements of the collections will be processed together. This
is quite straightforward in the cases of <1ist>, <string> and
<vector>, since there is an intuitive natural order for the el-
ements which allows them to be identified by a non-negative
integer. Thus, when iterating over a combination of any of
these, all the elements at index position ¢ will be processed to-
gether, starting with the elements at position 0 and finishing
with those at position n — 1 where n is the size of the smallest
collection in the combination. The subset of collections which
have natural order is called sequence and members of this set
can be identified by the predicate sequence?, while collections
in general can be identified by collection?.

Collection alignment is more complicated when tables are in-
volved since they use explicit keys rather than natural order
to identify their elements. In any iteration over a combination
of collections including a table or some tables, the set of keys
used is the intersection of the keys of the tables and the im-
plicit keys of the other collection classes present; this identifies
the elements of the collections with common keys. Thus, for
an iteration to process any elements from the combination of a
collection with natural order and a table, the table must have
some integer keys and they must be in the range [0... size) of
the collection with natural order.

A conforming level-0 implementation must define methods on
these functions to support operations on lists (16.12), strings
(16.16), tables (16.18), vector (16.19) and any combination of
these.

16.2.1 <collection> <object> class

16.1.12 generic-write <character> method

Specialized Arguments

character <character>: Character to be ouptut on
stream.

stream <stream>: Stream on which character is to
be ouptut.

Result
The character character.

Remarks

Output external representation of character on stream in the
format #\name as described at the beginning of this section.

40

The class of all collections.

16.2.2 <sequence> <collection> class

The class of all sequences, the subset of collections which have
natural order.

16.2.3 <character-sequence> <sequence> class

The class of all sequences of characters e.g. <string>.

16.2.4 <collection-condition>

<condition> condition

This is the condition class for all collection processing condi-
tions.

16.2.5 accumulate generic function

Version 0.991

Generic Arguments

function <function>: A function of two arguments.

obj <object>: The object which is the initial value
for the accumulation operation.

collection <collection>: The collection which is the
subject of the accumulation operation.

Result

The result is the result of the application of function to the
accumulated result and successive elements of collection. The
initial value of the accumulated result is supplied by obj.

Examples

Note that the order of the elements
of the second example depends on the hashing algo-
rithm of the implementation and does not prescribe
the result that any particular implementation must give.

in the result

(accumulate * 1 #(1 2 3 4 5)) = 120
(accumulate = (c b a)
(lambda (a v) (cons v a))
O
(make <table>
’entries
> ((1 b) (0. a) (2. <))
16.2.6 accumulatel generic function

Generic Arguments
function <function>: A function of two arguments.

collection <collection>: The collection which is the
subject of the accumulation operation.

Result

The result is the result of the application of function to the ac-
cumulated result and successive elements of collection starting
with the second element. The initial value of the accumulated
result is the first element of collection. The terms first and
second correspond to the appropriate elements of a natural or-
der collection, but no elements in particular of an explicit key
collection. If collection is empty, the result is ().

Examples

(accumulatel = (4 2)
(lambda (a v)
(if (evenp v) (cons v a) a))

’(1 2 3 45))

16.2.7 all? generic function

Generic Arguments

function <function>: A function to be used as a
predicate on the elements of the collection(s).

collection <collection>: A collection.

more-collectionsop: : More collections.

Result

The function is applied to argument lists constructed from
corresponding successive elements of collection and more-

Programming Language EuLisp:2010(E)

collections. If the result is t for all elements of collection and
more-collections the result of all? is t otherwise ().

Examples

(all? even? #(1 2 3 4)) = O
(all? even? #(2 4 6 8)) = t

See also

any?.

16.2.8 any? generic function

Generic Arguments

function <function>: A function to be used as a
predicate on the elements of the collection(s).

collection <collection>: A collection.

more-collectionsopt : More collections.

Result

The function is applied to argument lists constructed from
corresponding successive elements of collection and more-
collections. If the result is t, the result of any? is t and there
are no further applications of function to elements of collection
and more-collections. If any of the collections is exhausted, the
result of any? is ().

Examples

(any? even? #(1 2 3 4)) = t

(let ((x (List 1 2 3 4))) = O
(any? > x (cdr x)))

(any? =t
(lambda (a b) (= (% a b) 0))
#(32) ’(1 0))

See also
all~.

16.2.9 collection? generic function

Generic Arguments
object <object>: An object to examine.

Result
Returns t if object is a collection, otherwise ().

Remarks

This predicate does not return object because () is a collection.

16.2.10 concatenate generic function

Generic Arguments

collection <collection>: A collection.

more-collectionsopt : More collections.

Result
The result is an object of the same class as collection.

41

Programming Language EuLisp:2010(E)

Remarks

The contents of the result object depend on whether collection
has natural order or not:

a) If collection has natural order then the size of the result
is the sum of the sizes of collection and more-collections.
The result collection is initialized with the elements of col-
lection followed by the elements of each of more-collections
taken in turn. If any element cannot be stored in the result
collection, for example, if the result is a string and some
element is not a character, an error is signalled (condition
class: collection-condition).

b) If collection does not have natural order, then the result
will contain associations for each of the keys in collection
and more-collections. If any key occurs more than once,
the associated value in the result is the value of the last
occurrence of that key after processing collection and each
of more-collections taken in turn.

Examples
(concatenate #(1) ’(2) "bc") = #(1 2 #\b #\c))
(concatenate "a" ’ (#\b)) = "ab"
(concatenate = #<table:
(make <table>) 0 -> "c",
’(a b) 1 -> b>
|lcll)

16.2.11 delete generic function

Generic Arguments
object <object>: Object to be removed.

collection <collection>: A collection.

testopt : The function to be used to compare ob-
ject—/ and the elements of collection.

Result

If there is an element of collection such that test returns t when
applied to object—/ and that element, then the result is the
modified collection, less that element. Otherwise, the result is
collection.

Remarks
delete is destructive. The test function defaults to eql.

16.2.12 do generic function

Generic Arguments
function <function>: A function.

collection <collection>: A collection.

more-collectionsopt : More collections.

Result

The result is (). This operator is used for side-effect only. The
function is applied to argument lists constructed from corre-
sponding successive elements of collection and more-collections

and the result is discarded. Application stops if any of the col-
lections is exhausted.

42

Version 0.991

Examples

(do prin (1 b #\c)) = 1bc
(do write (1 b #\c)) = 1b#\c

16.2.13 element generic function

Generic Arguments

collection <collection>: The object to be accessed
or updated.

key <object>: The object identifying the key of the
element in collection.

Result
The value associated with key in collection.

Examples
(element "abc" 1) = #\b
(element ’(a b c) 1) = b
(element #(a b c) 1) = b
(element = b
(make <table> fill-value: ’b)
1)
16.2.14 (setter element) setter

Generic Arguments

collection <collection>: The object to be accessed
or updated.

key <object>: The object identifying the key of the
element in collection.

value <object>: The object to replace the value as-
sociated with key in collection (for setter).

Result

The argument supplied as value, having updated the associa-
tion of key in collection to refer to value.

16.2.15 empty? generic function

Generic Arguments

collection <collection>: The object to be exam-
ined.

Result

Returns t if collection is the object identified with the empty
object for that class of collection.

Examples

(emptyp nn)
(emptyp O)
(emptyp #(0))

=
=
=
(emptyp (make <table>)) =

ot ot o o

16.2.16 £ill generic function

Version 0.991

Generic Arguments

collection <collection>: A collection to be (par-
tially) filled.

object <object>: The object with which to fill collec-
tion.

keysopt : The keys with which object is to be associ-

ated.

Result
The result is ().

Remarks

This function side-effects collection by updating the values as-
sociated with each of the specified keys with obj. If no keys are
specified, the whole collection is filled with obj. Otherwise, the
key specification can take two forms:

a) A collection, in which case the values of the collection are
taken to be the keys of collection to be associated with
obj.

b) Two fixed precision integers, denoting the start and end
keys, respectively, in a natural order collection to be as-
sociated with obj. An error is signalled (condition class:
collection-condition) if collection does not have natu-
ral order. It is an error if the start and end do not specify
an ascending sub-interval of the interval [0, size), where
size is that of collection.

16.2.17 find-key generic function

Generic Arguments

collection <collection>: A collection.

test <function>: A function.

skipopt : An integer.
failureop: : An integer.
Result

The function test is applied to successive elements of collection.
If test returns t when applied to an element, then the result of
find-key is the key associated with that element.

Remarks

The value skip, which defaults to zero, indicates how many
successful tests are to be made before returning a result. The
value failure, which defaults to (), is returned if no key satisfy-
ing the test was found. Note that skip and failure are positional
arguments and that skip must be specified if failure is specified.

16.2.18 first generic function

Generic Arguments

sequence <sequence>: A sequence.

Result
The result is contents of index position 0 of sequence.

Programming Language EuLisp:2010(E)

16.2.19 1last generic function

Generic Arguments

sequence <sequence>: A sequence.

Result
The result is last element of sequence.

16.2.20 key-sequence generic function

Generic Arguments

collection <collection>: A collection.

Result
The result is a collection comprising the keys of collection.

16.2.21 map generic function

Generic Arguments

function <function>: A function.
collection <collection>: A collection.

more-collectionsopt : More collections.

Result

The result is an object of the same class as collection. The ele-
ments of the result are computed by the application of function
to argument lists constructed from corresponding successive el-
ements of collection and more-collections. Application stops if
any of the collections is exhausted.

Examples

(map cons #(1 2) ’(3)) = #((1 . 3))

(map = #(3 -121)
(lambda (f) (f 1 2))
#(+ - x %))
16.2.22 member generic function

Generic Arguments

object <object>: The object to be searched for in
collection.

collection <collection>: The collection to be

searched.

testopt : The function to be used to compare object
and the elements of collection.

Result

Returns t if there is an element of collection such that the
result of the application of test to object and that element is
t. If test is not supplied, eql is used by default. Note that t
denotes any value that is not () and that the class of the result
depends on the class of collection. In particular, if collection is
a list, the result of member is a list.

43

Programming Language EuLisp:2010(E)

Examples
(member #\b "abc") = t
(member ’b ’(a b c)) = (b)
(member ’b #(a b c)) = t
(member = t
’b
(make <table>
’entries
7 ((1 b) (0. a) (2. cN))
16.2.23 remove generic function

Generic Arguments
object <object>: Object to be removed.

collection <collection>: A collection.

testopt : The function to be used to compare object
and the elements of collection.

Result

If there is an element of collection such that test returns t when
applied to object and that element, then the result is a shallow
copy of collection less that element. Otherwise, the result is
collection.

Remarks

The test function defaults to eql.

16.2.24 reverse generic function

Generic Arguments

collection <collection>: A collection.

Result

The result is an object of the same class as collection whose
elements are the same as those in collection, but in the reverse
order with respect to the natural order of collection. If col-
lection does not have natural order, the result is equal to the
argument.

Examples

(reverse "abc") = '"cba"

(reverse (1 2 3)) = (32 1)

(reverse #(a b c)) = #(c b a)

16.2.25 reverse! generic function

Generic Arguments
collection <collection>: A collection.

Result

Destructively reverses the order of the elements in collection
(see reverse) and returns it.

16.2.26 sequence? generic function

Generic Arguments

object <object>: An object to examine.

44

Version 0.991

Result
Returns t if object is a sequence (has natural order), otherwise

O.

Remarks

This predicate does not return object because () is a sequence.

16.2.27 size generic function

Generic Arguments

collection <collection>: The object to be exam-
ined.

Result

An integer which denotes the size of collection according to the
method for the class of collection.

Examples

(size "") = 0
(size Q) = 0
(size #Q)) = 0
(size (make <table>)) = 0
(size "abc") = 3
(size (cons 1 ())) = 1
(size (cons 1 . 2)) = 1
(size (cons 1 (cons 2 . 3))) = 2
(size (1 2 3)) = 3
(size #(a b ¢)) = 3
(size (make <table> ’entries ’((0 . a))) = 1

16.2.28 slice generic function

Generic Arguments
sequence <sequence>: A sequence.

start <fpi>: The index of the first element of the
slice.

end <fpi>: The index of the last element of the slice.

Result

The result is new sequence of the same class as sequence con-
taining the elements of sequence from start up to but not in-
cluding end.

Examples
(slice ’(abcd) 13 = (bc)

16.2.29 sort generic function

Generic Arguments

sequence <sequence>: A sequence.
comparator <function>: A function.
Result

The result of sort is a new sequence comprising the elements of
sequence ordered according to comparator.

Version 0.991

Remarks

Methods on this function are only defined for <list> and
<vector>.

16.2.30 sort! generic function

Generic Arguments

sequence <sequence>: A sequence.
comparator <function>: A function.

Result

Destructively sorts the elements of sequence (see sort) and
returns it.

Remarks

Methods on this function are only defined for <list> and
<vector>.

16.2.31 (converter <list>) converter

Specialized Arguments

collection <collection>: A collection to be con-
verted into a list.

Result

If collection is a list, the result is the argument. Otherwise a list
is constructed and returned whose elements are the elements
of collection. If collection has natural order, then the elements
will appear in the result in the same order as in collection. If
collection does not have natural order, the order in the resulting
list is undefined.

See also
Conversion (16.4).

16.2.32 (converter <string>) converter

Specialized Arguments

collection <collection>: A collection to be con-
verted into a string.

Result

If collection is a string, the result is the argument. Other-
wise a string is constructed and returned whose elements are
the elements of collection as long as all the elements of col-
lection are characters. An error is signalled (condition class:
conversion-condition) if any element of collection is not a
character. If collection has natural order, then the elements
will appear in the result in the same order as in collection. If
collection does not have natural order, the order in the result-
ing string is undefined.

See also
Conversion (16.4).

16.2.33 (converter <table>) converter

Programming Language EuLisp:2010(E)

Specialized Arguments

collection <collection>: A collection to be con-
verted into a table.

Result

If collection is a table, the result is the argument. Otherwise
a table is constructed and returned whose elements are the
elements of collection. If collection has natural order, then
the elements will be stored under integer keys in the range
[0...size), otherwise the keys used will be the keys associated
with the elements of collection.

See also
Conversion (16.4).

16.2.34 (converter <vector>) converter

Specialized Arguments

collection <collection>: A collection to be con-
verted into a vector.

Result

If collection is a vector, the result is the argument. Otherwise
a vector is constructed and returned whose elements are the
elements of collection. If collection has natural order, then
the elements will appear in the result in the same order as in
collection. If collection does not have natural order, the order
in the resulting vector is undefined.

See also

Conversion (16.4).

45

Programming Language EuLisp:2010(E)

16.3 Comparison

The defined name of this module is compare. There are three
binary functions for comparing objects for equality, eq, eql,
binary= and the n-ary = which uses binary=. The three binary
functions are related in the following way:

(eq a) = (eql a b) = (binary= a b)
(eq a b) 4« (eql a b) ¢ (binary= a b)

There are four n-ary function for comparing objects by order, <
and > which are implemented by the generic function binary<,
<= and >= which are implemented by the generic functions
binary< and binary=. There is also one binary function for
comparing objects for inequality, !'=. A summary of the com-
parison functions and the classes for which they have defined
behaviour is given below:

eq: <object>Xx<object>

eql: <object>X<object> =eq
<character>Xx<character>
<fpi>Xx

<fpi>
<double-float>Xx<double-float> =binary=
<object>X<object>
<character>X<character>
<null>Xx<null>
<number> X <number> =-eql
<fpi>Xx

<fpi>
<double-float>x<double-float>
<double-float>Xx<fpi>
<fpi>X<double-float>
<cons>X<cons>
<string>X<string>
<vector>Xx<vector>
<character>Xx<character>
<symbol>Xx<symbol>

<fpi>Xx

<fpi>
<double-float>x<double-float>
<string>Xx<string>

= <object>Xx<object> =binary=
I=: <object>X<object>

<: <object>Xx<object> =binary<

>: <object>Xx<object>

<=: <object>Xx<object>

>=: <object>Xx<object>

binary=:

binary<:

16.3.1 eq Sfunction

Arguments
object; : An object.

objectz : An object.

Result

Compares object; and objectz and returns t if they are the same
object, otherwise (). Same in this context means “identifies
the same memory location”.

Remarks

In the case of numbers and characters the behaviour of eq might
differ between processors because of implementation choices
about internal representations. Therefore, eq might return t
or () for numbers which are = and similarly for characters
which are eql, depending on the implementation .

46

Version 0.991

Examples

(eq ’a ’a) =t

(eq ’a ’b) = O

(eq #\a #\a) = tor ()
(eq 3 3) = tor ()
(eq 3 3.0) = 0O

(eq 3.0 3.0) = tor ()
(eq (cons ’a ’b) (cons ’a ’c)) = 0O

(eq (cons ’a ’b) (coms ’a ’b)) = O
(eq ’(a . b) ’(a . b)) = tor)
(let ((x (comns ’a ’b))) (eq x x)) = t
(let ((x ’(a . b)) (eq x x)) = t

(eq "string" "string") = tor O
(eq #(’a ’b) #(’a ’b)) = tor ()
(let ((x #(’a ’b))) (eq x x)) = t

16.3.2 eql function

Arguments

object; : An object.

objectz : An object.

Result

If the class of object; and of objects is the same and is a subclass
of <character> or <number>, the result is that of comparing
them under binary= <character> or binary= <number> re-
spectively. Otherwise the result is that of comparing them
under eq.

Examples

Given the same set of examples as for eq, the same result is
obtained except in the following cases:

(eql #\a #\a) = t
(eql 3 3) = t
(eql 3.0 3.0) = t

16.3.3 binary= generic function

Arguments
object;, <object>: An object.

objects, <object>: An object.

Result

Returns t or () according to the method for the class(es) of
object; and objectz. It is an error if either or both of the argu-
ments is self-referential.

See also

Class specific methods on binary= are defined for <character>,
<list>, <number> (with specialisations for <fpi> and
<double-float>), <string>, <vectors>. All other cases are
handled by the default method defined for <object>:

16.3.4 binary= <object> method

Specialized Arguments
object; <object>: An object.

objects <object>: An object.

Version 0.991

Result

The result is as if eql had been called with the arguments
supplied.

16.3.5 binary< generic function

Generic Arguments

object; <object>: An object.

object; <object>: An object.

Result

The first argument if it is less than the second, according to
the method for the class of the arguments, otherwise ().

See also

Class specific methods on binary< are defined for <character>,
<string>, <fpi> and <double-float>.

16.3.6 = function
Arguments

numbery ...: A non-empty sequence of numbers.
Result

Given one argument the result is t. Given more than one
argument the result is determined by binary=, returning t if
all the arguments are the same, otherwise ().

16.3.7 != function
Arguments

numbery ...: A non-empty sequence of numbers.
Result

Given one argument the result is (). Given more than one
argument the result is determined by binary=, returning () if
all the arguments are the same, otherwise t.

16.3.8 < function

Arguments
object; ...: A non-empty sequence of objects.

Result

Given one argument the result is t. Given more than one

argument the result is t if the sequence of objects object; up to

object,, is strictly increasing according to the generic function

binary<. Otherwise, the result is ().

16.3.9 > function

Arguments

object; ...: A non-empty sequence of objects.

Result

Given one argument the result is t. Given more than one
argument the result is t if the sequence of objects object; up to

Programming Language EuLisp:2010(E)

object,, is strictly decreasing according to the generic function
binary< applied to the arguments in reverse order. Otherwise,
the result is ().

16.3.10 <= function

Arguments
object; ...: A non-empty sequence of objects.

Result

Given one argument the result is t. Given more than one

argument the result is t if the sequence of objects object; up to

object,, is strictly increasing according to the generic function

binary< and binary=. Otherwise, the result is ().

16.3.11 »>= function

Arguments

object; ...: A non-empty sequence of objects.

Result

Given one argument the result is t. Given more than one ar-
gument the result is t if the sequence of objects object: up
to object,, is strictly decreasing according to the generic func-
tion binary< and binary= applied to the arguments in reverse
order. Otherwise, the result is ().

16.3.12 max function

Arguments
object; ...: A non-empty sequence of objects.
Result

The maximal element of the sequence of objects object; up to
object,, using the generic function binary<. Zero arguments is
an error. One argument returns object; .

16.3.13 min function

Arguments

object; ...: A non-empty sequence of objects.

Result

The minimal element of the sequence of objects object; up to
object,, using the generic function binary<. Zero arguments is
an error. One argument returns object; .

47

Programming Language EuLisp:2010(E)
16.4 Conversion

The defined name of this module is convert.

The mechanism for the conversion of an instance of one class to
an instance of another is defined by a user-extensible framework
which has some similarity to the setter mechanism.

To the user, the interface to conversion is via the function
convert, which takes an object and some class to which the
object is to be converted. The target class is used to access
an associated converter function, in fact, a generic function,
which is applied to the source instance, dispatching on its class
to select the method which implements the appropriate con-
version. Thus, having defined a new class to which it may be
desirable to convert instances of other classes, the programmer
defines a generic function:

(defgeneric (converter new-class) (instance))

Hereafter, new converter methods may be defined for new-class
using a similar extended syntax for defmethod:

(defmethod (converter new-class)
((instance other-class)))

The conversion is implemented by defining methods on the
converter for new-class which specialize on the source class.
This is also how methods are documented in this text: by an
entry for a method on the converter function for the target
class. In general, the method for a given source class is defined
in the section about that class, for example, converters from
one kind of collection to another are defined in section 16.2,
converters from string in section 16.16, etc..

Version 0.991

Remarks

Should be signalled by convert or a converter method.

16.4.3

<no-converter>
<conversion-condition> condition

Initialization Options

source <object>: The object to be converted into an
instance of target-class.

target-class <class>: The target class for the con-
version operation.

Remarks

Should be signalled by convert if there is no associated func-
tion.

16.4.4 converter function

Arguments

target-class: The class whose set of conversion meth-
ods is required.

Result

The accessor returns the converter function for the class target-
class. The converter is a generic-function with methods spe-
cialized on the class of the object to be converted.

16.4.5 (setter converter) setter
16.4.1 convert function Arguments
target-class: The class whose converter function is to
Arguments be replaced.

object: An instance of some class to be converted to
an instance of class.

class: The class to which object is to be converted.

Result

Returns an instance of class which is equivalent in some class-
specific sense to object, which may be an instance of any type.
Calls the converter function associated with class to carry out
the conversion operation. An error is signalled (condition:
<no-converter>) if there is no associated function. An er-
ror is signalled (condition: <no-applicable-method>) if there
is no method to convert an instance of the class of object to an
instance of class.

16.4.2

<conversion-condition>
<condition> condition

This is the general condition class for all conditions arising
from conversion operations.

Initialization Options
source <object>: The object to be converted into an

instance of target-class.

target-class <class>: The target class for the con-
version operation.

48

generic-function: The new converter function.

Result

The new converter function. The setter function replaces
the converter function for the class target-class by generic-
function. The new converter function must be an instance of
<generic-function>.

Remarks

Converter methods from one class to another are defined in the
section pertaining to the source class.

See also

Converter methods are defined for collections (16.2), double
float (16.6), fixed precision integer (16.9), string (16.16), sym-
bol (16.17), vector (16.19).

Version 0.991

16.5 Copying

The defined name of this module is copy.

Programming Language EuLisp:2010(E)

Result
Returns object.

16.5.1 deep-copy generic function

16.5.6 shallow-copy <class> method

Generic Arguments

object: An object to be copied.

Result

Constructs and returns a copy of the source which is the same
(under some class specific predicate) as the source and whose
slots contain copies of the objects stored in the corresponding
slots of the source, and so on. The exact behaviour for each
class of object is defined by the most applicable method for
object.

See also

Class specific sections which define methods on deep-copy:
list (16.12), string (16.16), table (16.18) and vector (16.19).

16.5.2 deep-copy <object> method

Specialized Arguments

object <object>: An object.

Result
Returns object.

16.5.3 deep-copy <class> method

Specialized Arguments
class <class>: A class.

Result

Constructs and returns a new structure whose slots are initial-
ized with copies (using deep-copy) of the contents of the slots
of class.

16.5.4 shallow-copy generic function

Generic Arguments
object: An object to be copied.
Result

Constructs and returns a copy of the source which is the same
(under some class specific predicate) as the source. The ex-
act behaviour for each class of object is defined by the most
applicable method for object.

See also

Class specific sections which define methods on shallow-copy:
pair (16.12), string (16.16), table (16.18) and vector (16.19).

16.5.5 shallow-copy <object> method

Specialized Arguments

object <object>: An object.

Specialized Arguments

class <class>: A class.
Result

Constructs and returns a new structure whose slots are initial-
ized with the contents of the correpsonding slots of struct.

49

Programming Language EuLisp:2010(E)

16.6 Double Precision Floats

The defined name of this module is double. Arithmetic op-
erations for <double-float> are defined by methods on the
generic functions defined in the compare module (16.3):
binary=, binary¥,

the number module (16.14):

binary+, binary-, binary*, binary/, binary-mod, negate
zero?

the float module (16.7):
ceiling, floor, round, truncate
and the elementary functions module (?7?):

acos, asin, atan, atan2, cos, sin, tan, cosh, sinh, tanh,
exp, log, logl0, pow, sqrt

The behaviour of these functions is defined in the modules
noted above.

16.6.1 <double-float> <float> class

The class of all double precision floating point numbers.

The syntax for the exponent of a double precision floating point
is given below:

double-exponent:
d signopt decimal-integer
D signopt decimal-integer

The general syntax for floating point numbers is given in syntax
table 16.7.1.1.

16.6.2 double-float? function

Arguments
object: Object to examine.

Result
Returns object if it is a double float, otherwise ().

See also
float? (16.14).

16.6.3 most-positive-double-float <double-float>

constant

Version 0.991

Remarks

The value of least-positive-double-float is that positive
double precision floating point number closest in value to (but
not equal to) zero that the processor provides.

16.6.5 least-negative-double-float <double-float>

constant

Remarks

The value of least-negative-double-float is that negative
double precision floating point number closest in value to (but
not equal to) zero that the processor provides. Even if the
processor provide negative zero, this value must not be negative
Zero.

16.6.6 most-negative-double-float <double-float>

constant

Remarks
The value of most-negative-double-float is that negative

double precision floating point number closest in value to (but
not equal to) negative infinity that the processor provides.

16.6.7 (converter <string>) converter

Specialized Arguments
z <double-float>: A double precision float.

Result

Constructs and returns a string, the characters of which
correspond to the external representation of z as produced
by generic-print, namely that specified in the syntax as
[sign] float format 3.

16.6.8 (converter <fpi>) converter

Specialized Arguments

x <double-float>: A double precision float.

Result
A fixed precision integer.

Remarks

This function is the same as the <double-float> method of
round. It is defined for the sake of symmetry.

16.6.9 generic-print <double-float> method

Remarks

The value of most-positive-double-float is that positive
double precision floating point number closest in value to (but
not equal to) positive infinity that the processor provides.

16.6.4 least-positive-double-float <double-float>
constant

50

Specialized Arguments

double <double-float>: The double float to be out-
put on stream.

stream <stream>: The stream on which the represen-
tation is to be output.

Result
The double float supplied as the first argument.

Version 0.991

Remarks

Outputs the external representation of double on stream, as an
optional sign preceding the syntax defined by float format 3.
Finer control over the format of the output of floating point
numbers is provided by some of the formatting specifications
of format (see section 16.8).

16.6.10 generic-write <double-float> method

Specialized Arguments

double <double-float>: The double float to be out-
put on stream.

stream <stream>: The stream on which the represen-
tation is to be output.

Result
The double float supplied as the first argument.

Remarks

Outputs the external representation of double on stream, as an
optional sign preceding the syntax defined by float format 3.
Finer control over the format of the output of floating point
numbers is provided by some of the formatting specifications
of format (see section 16.8).

Programming Language EuLisp:2010(E)

16.7 Floating Point Numbers

The defined name of this module is float. This module defines
the abstract class <float> and the behaviour of some generic
functions on floating point numbers. Further operations on
numbers are defined in the numbers module (16.14) and fur-
ther operations on floating point numbers are defined in the
elementary functions module (?7). A concrete float class is
defined in the double float module (16.6).

16.7.1 float syntax

The syntax for the external representation of floating point
literals is defined in syntax table 16.7.1.1. The representation
used by write and prin is that of a sign, a whole part and a
fractional part without an exponent, namely that defined by
float format 3. Finer control over the format of the output of
floating point numbers is provided by some of the formatting
specifications of format (section 16.8).

16.7.1.1
float:

Syntax

Signopt unsigned-float exponentopt
unsigned-float:

float-format-1

float-format-2

float-format-3
float-format-1:

decimal-integer .
float-format-2:

decimal-integer

float-format-3:

float-format-1 decimal-integer
exponent:

double-exponent

A floating point number has six forms of external representa-
tion depending on whether either or both the whole and the
fractional part are specified and on whether an exponent is
specified. In addition, a positive floating point number is op-
tionally preceded by a plus sign and a negative floating point
number is preceded by a minus sign. For example: +123. (float
format 1), -.456 (float format 2), 123.456 (float format 3);
and with exponents: +123456.D-3, 1.23455D2, -.123456D3.

16.7.2 <float> <number> class

The abstract class which is the superclass of all floating point
numbers.

16.7.3 float? function

Arguments

objext: Object to examine.

Result
Returns object if it is a floating point number, otherwise ().

16.7.4 ceiling generic function

Generic Arguments

float <float>: A floating point number.

51

Programming Language EuLisp:2010(E)

Result

Returns the smallest integral value not less than float expressed
as a float of the same class as the argument.

16.7.5 floor generic function

Generic Arguments

float <float>: A floating point number.

Result

Returns the largest integral value not greater than float ex-
pressed as a float of the same class as the argument.

16.7.6 round generic function

Arguments

float: A floating point number.

Result

Returns the integer whose value is closest to float, except in
the case when float is exactly half-way between two integers,
when it is rounded to the one that is even.

16.7.7 truncate generic function

Arguments
float: A floating point number.

Result

Returns the greatest integer value whose magnitude is less than
or equal to float.

52

Version 0.991

16.8 Formatted-IO

The defined name of this module is formatted-io.

16.8.1 scan function

Arguments

format-string: A string containing format directives.

streamopt : A stream from which input is to be taken.

Result
Returns a list of the objects read from stream.

Remarks

This function provides support for formatted input. The
format-string specifies reading directives, and inputs are
matched according to these directives. An error is signaled
(condition: <scan-mismatch>) if the class of the object read is
not compatible with the specified directive. The second (op-
tional) argument specifies a stream from which to take input.
If stream is not supplied, input is taken from stdin. Scan
returns a list of the objects read in.

“a any: any object.

“b binary: an integer in binary format.

“c character: a single character

~d decimal: an integer decimal format.

“nepre: a exponential-format floating-point number.

“nope: a fixed-format floating-point number.

~o octal: an integer in octal format.

“r radix: an integer in specified radix format.

~x hexadecimal: an integer in hexadecimal format.

~% newline: matches a newline character in the input.

16.8.2 <scan-mismatch>

<stream-condition> condition

Initialization Options

format-string string: The value of this option is the
format string that was passed to scan.

input list: The value of this option is a list of the
items read by scan up to and including the object
that caused the condition to be signaled.

Remarks

This condition is signalled by scan if the format string does
not match the data input from stream.

16.8.3 sformat function

Arguments

stream: A stream.

Version 0.991

format-string: A string containing format directives.

object1 ...opt: A sequence of objects to be output on
stream.

Result

Returns stream and has the side-effect of outputting objects ac-
cording the formats specified in format-string to stream. Char-
acters are output as if the string were output by the sprin
function with the exception of those prefixed by tilde—graphic
representation “~—which are treated specially as detailed in
the following list. These formatting directives are intentionally
compatible with the facilities defined for the function fprintf
in ISO/IEC 9899 : 1990 except for the prefix ~ rather than
A

“a any: uses sprin to output the argument.

“b binary: the argument must be an integer and is out-
put in binary notation (syntax table 16.10.1.1).

“c character: the argument must be a character and is
output using write (syntax table 16.1.1.1).

~d decimal: the argument must be an integer and is out-
put using write (syntax table 16.10.1.1).

“Mopt - Nopte €xponential-format floating-point: the

argument must be a floating point number. It is output in
the style -optd.ddde+dd, in a field of width m characters,
where there are n precision digits after the decimal point,
or 6 digits, if n is not specified (syntax table 16.7.1.1). If
the value to be output has fewer characters than m it is
padded on the left with spaces.

“Mept . Nopt £ fixed-format floating-point: the argu-
ment must be a floating point number. It is output in the
style -optddd.ddd, in a field of width m characters, where
the are n precision digits after the decimal point, or 6
digits, if n is not specified (syntax table 16.7.1.1). The
value is rounded to the appropriate number of digits. If
the value to be output has fewer characters than m it is
padded on the left with spaces.

“Mopt - Nopt g generalized floating-point: the argu-
ment must be a floating point number. It is output in
either fixed-format or exponential notation as appropriate
(syntax table 16.7.1.1).

~o octal: the argument must be an integer and is output
in octal notation (syntax table 16.10.1.1).

“nr radix: the argument must be an integer and is out-
put in radix n notation (syntax table 16.10.1.1).

“s s-expression: uses write to output the argument
(syntax table 9.5.0.5).

“nopet tab: output sufficient spaces to reach the next tab-
stop, if n is not specified, or the n'* tab stop if it is.

“x hexadecimal: the argument must be an integer and
is output in hexadecimal notation (syntax table 16.10.1.1).

~% newline: output a newline character.
~& conditional newline: output a newline character us-
ing, if it cannot be determined that the output stream is

at the beginning of a fresh line.

~~ tilde: output a tilde character using sprin.

Programming Language EuLisp:2010(E)

16.8.4 format function

Arguments

format-string: A string containing format directives.

object; ...opt: A sequence of objects to be output on
stdout.

Result

Returns stdout and has the side-effect of outputting objects
according the formats specified in format-string (see sformat)
to stdout.

16.8.5 fmt function

Arguments

format-string: A string containing format directives.

object1 ...opt: A sequence of objects to be formatted
into a string.

Remarks

Return the string created by formatting the objects according
the formats specified in format-string (see sformat).

53

Programming Language EuLisp:2010(E)

16.9 Fixed Precision Integers

The defined name of this module is fpi. Arithmetic operations
for <fpi> are defined by methods on the generic functions de-
fined in the compare module (16.3):

binary=, binary<,

the number module:

binary+, binary-, binary*, binary/, binary’, binary-gcd,
binary-lcm, binary-mod, negate, zero?

and in the integer module:
even?

The behaviour of these functions is defined in the modules
noted above.

16.9.1 <fpi> <integer> class

The class of all instances of fixed precision integers.

Version 0.991

Result

Returns a double float whose value is the floating point ap-
proximation to integer.

16.9.7 generic-print <fpi> method

Specialized Arguments

integer <fpi>: An integer to be output on stream.

stream <stream>: The stream on which the represen-
tation is to be output.

Result
The fixed precision integer supplied as the first argument.

Remarks

Outputs external representation of integer on stream in decimal
as defined by decimal integer at the beginning of this section.

16.9.8 generic-write <fpi> method

16.9.2 int? function

Arguments
object: Object to examine.

Result
Returns object if it is fixed precision integer, otherwise ().

16.9.3 most-positive-int <fpi> constant

Remarks

This is an implementation-defined constant. A conforming pro-
cessor must support a value greater than or equal to 32767 and
greater than or equal to the value of maximum-vector-index.

16.9.4 most-negative-int <fpi> constant

Remarks

This is an implementation-defined constant. A conforming pro-
cessor must support a value less than or equal to —32768.

16.9.5 (converter <string>) converter

Specialized Arguments
integer <fpi>: An integer.

Result

Constructs and returns a string, the characters of which cor-
respond to the external representation of integer in decimal
notation.

16.9.6 (converter <double-float>) converter

Specialized Arguments

integer <fpi>: An integer.

54

Specialized Arguments

integer <fpi>: An integer to be output on stream.

stream <stream>: The stream on which the represen-
tation is to be output.

Result
The fixed precision integer supplied as the first argument.

Remarks

Outputs external representation of integer on stream in decimal
as defined by decimal integer at the beginning of this section.

Version 0.991

16.10 Integers

The defined name of this module is integer. This module
defines the abstract class <integer> and the behaviour of some
generic functions on integers. Further operations on numbers
are defined in the numbers module (16.14). A concrete integer
class is defined in the fixed precision integer module (16.9).

16.10.1 integer syntax

A positive integer is has its external representation as a se-
quence of digits optionally preceded by a plus sign. A negative
integer is written as a sequence of digits preceded by a minus
sign. For example, 1234567890, -456, +1959.

Integer literals have an external representation in any base up
to base 36. For convenience, base 2, base 8 and base 16 have
distinguished notations—#b, #o0o and #x, respectively. For ex-
ample: 1234, #610011010010, #02322 and #x4d2 all denote the
same value.

The general notation for an arbitrary base is #baser, where
base is an unsigned decimal number. Thus, the above exam-
ples may also be written: #10r1234, #2r10011010010, #8r2322,
#16r4d2 or #36rya. The reading of any number is terminated
on encountering a character which cannot be a constituent of
that number. The syntax for the external representation of
integer literals is defined below.

Programming Language EuLisp:2010(E)

16.10.1.1 Syntax

integer:
Signopt unsigned-integer
one of
+ -
unsigned-integer:
binary-integer
octal-integer
decimal-integer
hexadecimal-integer
specified-base-integer
binary-integer:
#o binary-digit"
binary-digit: one of
01
octal-integer:
#o octal-digit™
octal-digit: one of
01234567
decimal-integer:
decimal-digit™
hezadecimal-integer:
#x hezadecimal-digit™
hezadecimal-digit:
dectmal-digit
hez-lower-letter
hex-upper-letter
hez-lower-letter: one of
abcdef
hex-upper-letter: one of
ABCDEF
specified-base-integer:
base-specification T
specified-base-digit
specified-base-digit”
base-specification:
{21314151617I1819}
{11 2} decimal-digit
3{ol1121314151¢6}
specified-base-digit:
decimal-digit
letter

sign:

NOTE 1 At present this text does not define a class integer
with variable precision. It is planned this should appear in a fu-
ture version at level-1 of the language. The class will be named
<variable-precision-integer>. The syntax given here is applica-
ble to both fixed and variable precision integers.

16.10.2 <integer> <number> class

The abstract class which is the superclass of all integer num-
bers.

16.10.3 integer? unction
g

Arguments

object: Object to examine.

Result
Returns object if it is an integer, otherwise ().

16.10.4 even? generic function

55

Programming Language EuLisp:2010(E)

Arguments

integer, <integer>: An integer.

Result
Returns t if two divides integer, otherwise ().

16.10.5 odd? Sfunction

Arguments

integer: An integer.
Result

Returns the equivalent of the logical negation of even? applied
to integer.

56

Version 0.991

16.11 Keywords

The defined name of this module is keyword.

16.11.1 keyword syntax

The syntax of keywords is very similar to that of identifiers
and of symbols, including all the escape conventions, but are
distinguished by a colon (:) suffix:

16.11.1.1 Syntax
keyword:
identifier:

It is an error to use a keyword where an identifier is expected,
such as, for example, in lambda parameter lists or in let binding
forms.

The matter of keywords appering in lambda parameter lists,
for example, rest:, instead of the dot notation, is currently an
open issue.

Operationally, the most important aspect of keywords is that
each is unique, or, stated the other way around: the result of
processing every syntactic token comprising the same sequence
of characters which denote a keyword is the same object. Or,
more briefly, every keyword with the same name denotes the
same keyword. A consequence of this guarantee is that key-
words may be compared using eq.

16.11.2 <keyword> <name> class

The class of all instance of <keyword>.

Initialization Options
string string: The string containing the characters
to be used to name the keyword. The default
value for string is the empty string, thus resulting
in the keyword with no name, written |:|.

What is the defined behaviour if the last character of string is
colon?

16.11.3 keyword? function

Arguments
object: Object to examine.

Result
Returns object if it is a keyword.

16.11.4 keyword-name function

Arguments

keyword: A keyword.

Result

Returns a string which is binary= <string> to that given as
the argument to the call to make which created keyword. It is
an error to modify this string.

Version 0.991

16.11.5 keyword-exists? function

Arguments

string: A string containing the characters to be used
to determine the existence of a keyword with that
name.

Result

Returns the keyword whose name is string if that keyword has
already been constructed by make. Otherwise, returns ().

16.11.6 generic-print <keyword> method

Specialized Arguments

keyword <keyword>: The keyword to be output on
stream.

stream <stream>: The stream on which the represen-
tation is to be output.

Result
The keyword supplied as the first argument.

Remarks

Outputs the external representation of keyword on stream as
described in the section on symbols, interpreting each of the
characters in the name.

16.11.7 generic-write <keyword> method

Specialized Arguments

keyword <keyword>: The keyword to be output on
stream.

stream <stream>: The stream on which the represen-
tation is to be output.

Result
The keyword supplied as the first argument.

Remarks

Outputs the external representation of keyword on stream as
described in the section on symbols. If any characters in the
name would not normally be legal constituents of a keyword,
the output is preceded and succeeded by multiple-escape char-
acters.

Examples
(write (make <keyword> ’string "abc")) = abc:

(write (make <keyword> ’string "a c")) = |a c:|
(write (make <keyword> ’string ").(")) = [).(:|
16.11.8 (converter <string>) converter

Specialized Arguments

keyword <keyword>: A keyword to be converted to a
string.

Result
A string.

Programming Language EuLisp:2010(E)

Remarks

This function is the same as keyword-name. It is defined for
the sake of symmetry.

57

Programming Language EuLisp:2010(E)
16.12 Lists

The name of this module is list. The class <list> is an
abstract class and has two subclasses: <null> and <cons>. The
only instance of <null> is the empty list. The combination
of these two classes allows the creation of proper lists, since
a proper list is one whose last pair contains the empty list
in its cdr field. See also section 16.2 (collections) for further
operations on lists.

16.12.1 <list> <collection> class

The class of all lists.

16.12.2 (O syntax

Remarks

The empty list, which is the only instance of the class <null>,
has as its external representation an open parenthesis followed
by a close parenthesis. The empty list is also used to denote
the boolean value false.

16.12.3 <null> <list> class

The class whose only instance is the empty list, denoted ().

16.12.4 null? function

Arguments
object: Object to examine.

Result
Returns t if object is the empty list, otherwise ().

16.12.5 generic-print <null> method

Specialized Arguments

null: The empty list.

stream: The stream on which the representation is
to be output.

Result
The empty list.

Remarks

Output the external representation of the empty list on stream
as described above.

16.12.6 generic-write <null> method

Specialized Arguments

null: The empty list.

stream: The stream on which the representation is
to be output.

58

Version 0.991

Result
The empty list.

Remarks

Output the external representation of the empty list on stream
as described above.

16.12.7 pair syntax

A pair is written as (object; . objects), where object; is called
the car and objects is called the cdr. There are two special
cases in the external representation of pair. If objecty is the
empty list, then the pair is written as (object1). If objects is
an instance of pair, then the pair is written as (object: objects

objects), where objects is the car of objectz and objects is
the cdr with the above rule for the empty list applying. By
induction, a list of length n is written as (objects ... object,—1 .
object,), with the above rule for the empty list applying. The
representations of object; and objectz are determined by the ex-
ternal representations defined in other sections of this definition
(see <character> (16.1), <double-float> (16.6), <fpi> (16.9),
<string> (16.16), <symbol> (16.17) and <vector> (16.19), as
well as instances of <cons> itself. The syntax for the exter-
nal representation of pairs and lists is defined in syntax ta-
ble 16.12.7.1.

16.12.7.1 Syntax
null:
O
pair:
(object . object)
list:

empty-list

proper-list

improper-list
empty-list:

O
proper-list:

(object™)
improper-list:

(object™ object)

Examples
O the empty list
1) a list whose car is 1 and cdr is ()

(1 . 2) a pair whose car is 1 and cdr is 2
1 2) a list whose car is 1 and cdr is (2)
16.12.8 <cons> <list> class

The class of all instances of <cons>. An instance of the class
<cons> (also known informally as a dotted pair or a pair) is a
2-tuple, whose slots are called, for historical reasons, car and
cdr. Pairs are created by the function cons and the slots are
accessed by the functions car and cdr. The major use of pairs
is in the construction of (proper) lists. A (proper) list is defined
as either the empty list (denoted by ()) or a pair whose cdr is
a proper list. An improper list is one containing a cdr which
is not a list (see syntax table 16.12.7.1).

It is an error to apply car or cdr or their setter functions to
anything other than a pair. The empty list is not a pair and
(car ()) or (cdr ()) is an error.

Version 0.991

Programming Language EuLisp:2010(E)

16.12.9 cons? function

Arguments

object: Object to examine.

Result
Returns object if it is a pair, otherwise ().

16.12.10 atom? function

Arguments
object: Object to examine.

Result
Returns object if it is not a pair, otherwise ().

16.12.11 cons function

Arguments
object; : An object. pair.

objecty : An object. pair.

Result

Allocates a new pair whose slots are initialized with object; in
the car and objectz in the cdr.

16.12.12 car function

Arguments

pair: A pair.

Result

Given a pair, such as the result of (cons object: objects),
then the function car returns object;.

16.12.13 cdr function

Arguments
pair: A pair.

Result

Given a pair, such as the result of (cons object: objects),
then the function cdr returns objects.

16.12.14 (setter car) setter

Arguments
pair: A pair.

object: An object.

Result

Given a pair, such as the result of (cons object: objects),
then the function (setter car) replaces object; with object.
The result is object.

16.12.15 (setter cdr) setter

Arguments

pair: A pair.
object: An object.

Result

Given a pair, such as the result of (cons object: objects),
then the function (setter cdr) replaces objecta with object.
The result is object.

Remarks

Note that if object is not a proper list, then the use of (setter
cdr) might change pair into an improper list.

16.12.16 binary= <cons> method

Specialized Arguments
pairy <cons>: A pair.

pairy <cons>: A pair.

Result

If the result of the conjunction of the pairwise application of
binary= to the car fields and the cdr fields of the arguments
is t the result is pair; otherwise the result is ().

16.12.17 deep-copy <cons> method

Specialized Arguments

pair <cons>: A pair.

Result

Constructs and returns a copy of the list starting at pair copy-
ing both the car and the cdr slots of the list. The list can
be proper or improper. Treatment of the objects stored in the
car slot (and the cdr slot in the case of the final pair of an
improper list) is determined by the deep-copy method for the
class of the object.

16.12.18 shallow-copy <cons> method

Specialized Arguments

pair <cons>: A pair.

Result

Constructs and returns a copy of the list starting at pair but
copying only the cdr slots of the list, terminating when a pair
is encountered whose cdr slot is not a pair. The list beginning
at pair can be proper or improper.

16.12.19 1list function
Arguments
objecty ... objectnopt: A sequence of objects.

59

Programming Language EuLisp:2010(E)

Result

Allocates a set of pairs each of which has been initialized with
object; in the car field and the pair whose car field contains
object;+1 in the cdr field. Returns the pair whose car field
contains object; .

Examples

(1list) = O
(list 1 23) = (12 3)

16.12.20 generic-print <cons> method

Specialized Arguments
pair <cons>: The pair to be output on stream.

stream <stream>: The stream on which the represen-
tation is to be output.

Result
The pair supplied as the first argument.

Remarks

Output the external representation of pair on stream as de-
scribed at the beginning of this section. Uses generic-print
to produce the external representation of the contents of the
car and cdr slots of pair.

Version 0.991

16.13 Elementary Functions

The defined name of this module is mathlib. The functionality
defined for this module is intentionally precisely that of the
trigonmetric functions, hyperbolic functions, exponential and
logarithmic functions and power functions defined for <math.h>
in ISO/IEC 9899 : 1990 with the exceptions of frexp, ldexp
and modf.

16.13.1 pi <double-float> constant

Remarks

The value of pi is the ratio the circumference of a circle to its
diameter stored to double precision floating point accuracy.

16.12.21 generic-write <cons> method

Specialized Arguments

pair <cons>: The pair to be output on stream.

stream <stream>: The stream on which the represen-
tation is to be output.

Result
The pair supplied as the first argument.

Remarks

Output the external representation of pair on stream as de-
scribed at the beginning of this section. Uses generic-write
to produce the external representation of the contents of the
car and cdr slots of pair.

60

16.13.2 acos generic function

Generic Arguments

float <float>: A floating point number.

Result

Computes the principal value of the arc cosine of float which
is a value in the range [0, 7] radians. An error is signalled
(condition-class: <domain-condition>) if float is not in the
range [—1,+1].

16.13.3 asin generic function

Generic Arguments

float <float>: A floating point number.

Result

Computes the principal value of the arc sine of float which is a
value in the range [—m/2,+m/2] radians. An error is signalled
(condition-class: <domain-condition>) if float is not in the
range [—1,+1].

16.13.4 atan generic function

Generic Arguments
float <float>: A floating point number.

Result

Computes the principal value of the arc tangent of float which
is a value in the range [—7/2, +7 /2] radians.

16.13.5 atan2 generic function

Generic Arguments
floaty <float>: A floating point number.

floats <float>: A floating point number.

Result

Computes the principal value of the arc tangent of float: /floatz,
which is a value in the range [—, +7] radians, using the signs of
both arguments to determine the quadrant of the result. An er-
ror might be signalled (condition-class: <domain-condition>)
if either float: or floats is zero.

Version 0.991

16.13.6 cos generic function

Generic Arguments

float <float>: A floating point number.

Result
Computes the cosine of float (measured in radians).

16.13.7 sin generic function

Generic Arguments
float <float>: A floating point number.

Result
Computes the sine of float (measured in radians).

16.13.8 tan generic function

Generic Arguments

float <float>: A floating point number.

Result
Computes the tangent of float (measured in radians).

16.13.9 cosh generic function

Generic Arguments

float <float>: A floating point number.

Result

Computes the hyperbolic cosine of float. An error might be sig-
nalled (condition class: <range-condition>) if the magnitude
of float is too large.

16.13.10 sinh generic function

Generic Arguments
float <float>: A floating point number.

Result

Computes the hyperbolic sine of float. An error might be sig-
nalled (condition class: <range-condition>) if the magnitude
of float is too large.

16.13.11 tanh generic function

Generic Arguments

float <float>: A floating point number.

Result
Computes the hyperbolic tangent of float.

16.13.12 exp generic function

Programming Language EuLisp:2010(E)

Generic Arguments

float <float>: A floating point number.

Result

Computes the exponential function of float. An error might be
signalled (condition class: <range-condition>) if the magni-
tude of float is too large.

16.13.13 1log generic function

Generic Arguments

float <float>: A floating point number.

Result

Computes the natural logarithm of float. An error is signalled
(condition class: <domain-condition>) if float is negative. An
error might be signalled (condition class: <range-condition>)
if float is zero.

16.13.14 1logl0 generic function

Generic Arguments

float <float>: A floating point number.

Result

Computes the base-ten logarithm of float. An error is signalled
(condition class: <domain-condition>) if float is negative. An
error might be signalled (condition class: <range-condition>)
if float is zero.

16.13.15 pow generic function

Generic Arguments
float; <float>: A floating point number.

floata <float>: A floating point number.

Result

Computes float; raised to the power floatz. An error is signalled
(condition class: <domain-condition>) if float; is negative and
floats is not integral. An error is signalled (condition class:
<domain-condition>) if the result cannot be represented when
floaty is zero and floats is less than or equal to zero. An error
might be signalled (condition class: <range-condition>) if the
result cannot be represented.

16.13.16 sqrt generic function

Generic Arguments
float <float>: A floating point number.

Result

Computes the non-negative square root of float. An error is
signalled (condition class: <domain-condition>) if float is neg-
ative.

61

Programming Language EuLisp:2010(E)
16.14 Numbers

The defined name of this module is number.

Numbers can take on many forms with unusual properties, spe-
cialized for different tasks, but two classes of number suffice
for the majority of needs, namely integers (<integer>, <fpi>)
and floating point numbers (<float>, <double-float>). Thus,
these only are defined at level-0.

Table 4 shows the initial number class hierarchy at level-0. The
inheritance relationships by this diagram are part of this def-
inition, but it is not defined whether they are direct or not.
For example, <integer> and <float> are not necessarily di-
rect subclasses of <number>, while the class of each number
class might be a subclass of <number>. Since there are only two
concrete number classes at level-0, coercion is simple, namely
from <fpi> to <double-float>. Any level-0 version of a library
module, for example, elementary-functions 7?7, need only define
methods for these two classes. Mathematically, the reals are re-
garded as a superset of the integers and for the purposes of this
definition we regard <float> as a superset of <integer> (even
though this will cause representation problems when variable
precision integers are introduced). Hence, <float> is referred
to as being higher that <integer> and arithmetic involving in-
stances of both classes will cause integers to be converted to
an equivalent floating point value, before the calculation pro-
ceeds® (see in particular binary/, binary’% and binary-mod).

Table 4 — Level-0 number class hierarchy

<number>
<float>
<double-float>
<integer>
<fpi>

16.14.1 <number> <object> class

The abstract class which is the superclass of all number classes.

16.14.2 number? function

Arguments
object: Object to examine.

Result
Returns object if it is a number, otherwise ().

<arithmetic-condition>
<condition> condition

16.14.3

Initialization Options

operator object: The operator which signalled the
condition.

operand-list list: The operands passed to the oper-
ator.

3)This behaviour is popularly referred to as floating point conta-
gion

62

Version 0.991

Remarks

This is the general condition class for conditions arising from
arithmetic operations.

16.14.4 <division-by-zero>

<arithmetic-condition> condition

Signalled by any of binary/, binary’, and binary-mod if their
second argument is zero.

16.14.5 + function

Arguments

numbery numbers ...opt : A sequence of numbers.
Result
Computes the sum of the arguments using the generic function
binary+. Given zero arguments, + returns 0 of class <integer>.
One argument returns that argument. The arguments are com-
bined left-associatively.

16.14.6 - function

Arguments

number; numbers ...
numbers.

opt : A mnon-empty sequence of

Result

Computes the result of subtracting successive arguments—
from the second to the last—from the first using the generic
function binary-. Zero arguments is an error. One argument
returns the negation of the argument, using the generic func-
tion negate. The arguments are combined left-associatively.

16.14.7 function

Arguments

number; numbers ...opt 1 A sequence of numbers.

Result

Computes the product of the arguments using the generic func-
tion binary*. Given zero arguments, * returns 1 of class

<integer>. Omne argument returns that argument. The ar-
guments are combined left-associatively.

16.14.8 / function
Arguments

number: numbers ...
numbers.

opt : A non-empty sequence of

Result

Computes the result of dividing the first argument by its suc-
ceeding arguments using the generic function binary/. Zero
arguments is an error. One argument computes the reciprocal
of the argument. It is an error in the single argument case, if
the argument is zero.

Version 0.991

16.14.9 7 function

Arguments
number; numbers ...opt : A non-empty sequence of

numbers.

Result

Computes the result of taking the remainder of dividing the
first argument by its succeeding arguments using the generic
function binary’%. Zero arguments is an error. One argument
returns that argument.

16.14.10 mod function

Arguments

number: numbers ..
numbers.

.opt © A mnon-empty sequence of

Result

Computes the largest integral value not greater than the re-
sult of dividing the first argument by its succeeding arguments
using the generic function binary-mod. Zero arguments is an
error. One argument returns number; .

Programming Language EuLisp:2010(E)

Generic Arguments

number: A number.

Result

Compares number with the zero element of the class of number
using the generic function binary=.

16.14.15 negate generic function

Generic Arguments

number <number>: A number.

Result
Computes the additive inverse of number.

16.14.11 gcd function

Arguments
number; numbers ...opt : A non-empty sequence of

numbers.

Result

Computes the greatest common divisor of number; up to
number, using the generic function binary-gcd. Zero argu-
ments is an error. One argument returns number;.

16.14.12 1cm function

Arguments

number: numbers ..
numbers.

.opt © A non-empty sequence of

Result
Computes the least common multiple of number; up to

16.14.16 signum function

Arguments

number: A number.

Result

Returns number if zero? applied to number is t. Otherwise
returns the result of converting +1 to the class of number with
the sign of number.

16.14.17 positive? function

Arguments
number: A number.

Result

Compares number against the zero element of the class of num-
ber using the generic function binary<.

16.14.18 negative? function

Arguments

number: A number.

Result

Compares number against the zero element of the class of num-
ber using the generic function binary<.

number, using the generic function binary-lcm. Zero argu-
ments is an error. One argument returns number;.
16.14.19 binary= <number> method
16.14.13 abs function ~ Generic Arguments
number; <number>: A number.
Arguments

number: A number.

Result
Computes the absolute value of number.

numbers <number>: A number.

Result

Returns t if number; and numbers are numerically equal oth-
erwise ();

16.14.14 zero? generic function

16.14.20 binary+ generic function

63

Programming Language EuLisp:2010(E)

Generic Arguments

number; <number>: A number.

numbers <number>: A number.

Result
Computes the sum of number; and numbers.

16.14.21 binary- generic function

Generic Arguments

number; <number>: A number.

numbers <number>: A number.

Result
Computes the difference of number; and numbers.

16.14.22 binary* generic function

Generic Arguments

number; <number>: A number.

numbers <number>: A number.

Result
Computes the product of number; and numbers.

Version 0.991

16.14.25 binary-mod generic function

Generic Arguments

number; <number>: A number.

numbery <number>: A number.

Result

Computes the largest integral value not greater than
number; numbers expressed as a number of the class of the
higher of the classes of the two arguments, such that if numbera
is non-zero, the result has the same sign as numberz and mag-
nitude less than numbers. If the second argument is zero, the
result might be zero or an error might be signalled (condition
class: <division-by-zero>).

16.14.26 binary-gcd generic function

Generic Arguments

number; <number>: A number.

numbers <number>: A number.

Result

Computes the greatest common divisor of number;
numbers.

and

16.14.27 binary-lcm generic function

16.14.23 binary/ generic function

Generic Arguments
number; <number>: A number.

numbers <number>: A number.

Result

Computes the division of number; by numbers expressed as
a number of the class of the higher of the classes of the two
arguments. The sign of the result is positive if the signs the
arguments are the same. If the signs are different, the sign of
the result is negative. If the second argument is zero, the result
might be zero or an error might be signalled (condition class:
<division-by-zero>).

16.14.24 binary), generic function

Generic Arguments
number; <number>: A number.

numbers <number>: A number.

Result

Computes the value of numberi—ixnumbers expressed as a
number of the class of the higher of the classes of the two argu-
ments, for some integer ¢ such that, if numbers is non-zero, the
result has the same sign as number; and magnitude less then
the magnitude of numbers. If the second argument is zero, the
result might be zero or an error might be signalled (condition
class: <division-by-zero>).

64

Generic Arguments
number: <number>: A number.

numbers <number>: A number.

Result

Computes the lowest common multiple of number
numbers.

and

Version 0.991

16.15 Streams
The defined name of this module is stream.

The aim of the stream design presented here is an open archi-
tecture for programming with streams, which should be appli-
cable when the interface to some object can be characterized
by either serial access to, or delivery of, objects.

The two specific objectives are: (i) transfer of objects between
a process and disk storage; (ii) transfer of objects between one
process and another.

The fundamental purpose of a stream object in the scheme
presented here is to provide an interface between two objects
through the two functions read, for streams from which objects
are received, and write, for streams to which objects are sent.

16.15.1 Stream classes

16.15.1 <stream> <object> class

This is the root of the stream class hierarchy and also defines
the basic stream class.

Initialization Options

read-action <function>: A function which is
called by the <stream> generic-read <stream>
method. The accessor for this slot is called
stream-read-action.

write-action <function>: A function which
is called by the <stream> generic-write
<stream> method. The accessor for this slot is
called stream-write-action.

The following accessor functions are defined for <stream>

stream-lock: A lock, to be used to allow exclusive
access to a stream.

stream-source: An object to which the stream is
connected and from which input is read.

stream-sink: An object to which the stream is con-
nected and to which ouptut is written.

stream-buffer: An object which is used to buffer
data by some subclasses of <stream>. Its default
value is ().

stream-buffer-size: The maximum number of ob-
jects that can be stored in stream-buffer. Its de-

fault value is 0.

The transaction unit of <stream> is <object>.

16.15.2 stream? Sfunction

Arguments

object, <object>: The object to be examined.

Result
Returns object if it is a stream, otherwise ().

16.15.3 from-stream function

Programming Language EuLisp:2010(E)

A constructor function of one argument for <stream> which
returns a stream whose stream-read-action is the given ar-
gument.

16.15.4 to-stream function

A constructor function of one argument for <stream> which
returns a stream whose stream-write-action is the given ar-
gument.

16.15.5 <buffered-stream> <stream> class

This class specializes <stream> by the use of a buffer
which may grow arbitrarily large. The transaction unit of
<buffered-stream> is <object>.

16.15.6 <fixed-buffered-stream>

<buffered-stream> class

This class specializes <buffered-stream> by placing a bound
on the growth of the buffer. The transaction unit of
<fixed-buffered-stream> is <object>.

16.15.7 <file-stream> <fixed-buffered-stream> -class

This class specializes <fixed-buffered-stream> by providing
an interface to data stored in files on disk. The transaction unit
of <file-stream> is <character>. The following additional
accessor functions are defined for <file-stream>:

file-stream-filename: The path identifying the file
system object associated with the stream.

file-stream-mode: The mode of the connection be-
tween the stream and the file system object (usu-
ally either read or write).

file-stream-buffer-position: A key identifying
the current position in the stream’s buffer.

16.15.8 file-stream? function

Arguments
object, <object>: The object to be examined.

Result
Returns object if it is a <file-stream> otherwise ().

16.15.9 <string-stream> <buffered-stream> class

The class of the default string stream.

16.15.10 string-stream? function

Arguments

object, <object>: The object to be examined.

65

Programming Language EuLisp:2010(E)

Result
Returns object if it is a <string-stream> otherwise ().

16.15.2 Stream operators

16.15.11 connect function
Arguments
source: The source object from which the stream will
read data.

sink: The sink object to which the stream will write
data.

optionsopt : An optional argument for specifying
implementation-defined options.

Result
The return value is ().

Remarks

Connects source to sink according to the class-specific be-
haviours of generic-connect.

16.15.12 generic-connect generic function

Generic Arguments

source <object>: The source object from which the
stream will read data.

sink <object>: The sink object to which the stream
will write data.

optionsep: <list>: An optional argument for speci-
fying implementation-defined options.

Remarks
Generic form of connect.

16.15.13 generic-connect <stream> method

Specialized Arguments
source <stream>: The stream which is to be the
source of sink.

sink <stream>: The stream which is to be the sink
of source.

options <list>: A list of implementation-defined op-
tions.

Result
The return value is ().

Remarks
Connects the source of sink to source and the sink of source to
sink.

16.15.14 generic-connect <path> method

Version 0.991

sink <file-stream>: The stream via which data will
be received from the file named by path.

options <list>: A list of implementation-defined op-
tions.

Result
The return value is ().

Remarks

Opens the object identified by the path source for reading and
connects sink to it. Hereafter, sink may be used for read-
ing data from sink, until sink is disconnected or reconnected.
Implementation-defined options for the opening of files may be
specified using the third argument.

See also

open-input-file.

16.15.15 generic-connect <file-stream> method

Specialized Arguments
source <file-stream>: The stream via which data
will be sent to the file named by path.

sink <path>: A path name.

options <list>: A list of implementation-defined op-
tions.

Result
The return value is ().

Remarks

Opens the object identifed by the path sink for writing and
connects source to it. Hereafter, source may be used for writ-
ing data to sink, until source is disconnected or reconnected.
Implementation-defined options for the opening of files may be
specified using the third argument.

See also

open-output-file.

generic function

16.15.16 reconnect

Generic Arguments

sl <stream>: A stream.

s2 <stream>: A stream.

Result
The return value is ().

Remarks
Transfers the source and sink connections of sI to s2, leaving
s1 disconnected.

method

16.15.17 reconnect <stream>

Specialized Arguments

source <path>: A path name.

66

Specialized Arguments

sl <stream>: A stream.

Version 0.991
s2 <stream>: A stream.

Result
The return value is ().

Remarks

Implements the reconnect operation for objects of class
<stream>.

16.15.18 disconnect generic function

Generic Arguments
s <stream>: A stream.

Result
The return value is ().

Remarks
Disconnects the stream s from its source and/or its sink.

16.15.19 disconnect <stream> method

Specialized Arguments
s <stream>: A stream.

Result
The return value is ().

Remarks

Implements the diconnect operation for objects of class
<stream>.

16.15.20 disconnect <file-stream> method

Specialized Arguments

s <file-stream>: A file stream.

Result
The return value is ().

Remarks

Implements the diconnect operation for objects of class
<file-stream>. In particular, this involves closing the file as-
sociated with the stream s.

16.15.3 Stream objects

16.15.21 stdin <file-stream> instance

Remarks

The standard input stream, which is a file-stream and whose
transaction unit is therefore character. In Posix compliant con-
figurations, this object is initialized from the Posix stdin ob-
ject. Note that although stdin itself is a constant binding, it
may be connected to different files by the reconnect operation.

16.15.22 1lispin <stream> instance

Programming Language EuLisp:2010(E)

Remarks

The standard lisp input stream, and its transaction unit is ob-
ject. This stream is initially connected to stdin (although not
necessarily directly), thus a read operation on lispin will case
characters to be read from stdin and construct and return an
object corresponding to the next lisp expression. Note that al-
though lispin itself is a constant binding, it may be connected
to different source streams by the reconnect operation.

16.15.23 stdout <file-stream> instance

Remarks

The standard output stream, which is a file-stream and whose
transaction unit is therefore character. In Posix compliant con-
figurations, this object is initialized from the Posix stdout ob-
ject. Note that although stdout itself is a constant binding, it
may be connected to different files by the reconnect operation.

16.15.24 stderr <file-stream> instance

Remarks

The standard error stream, which is a file-stream and whose
transaction unit is therefore character. In Posix compliant con-
figurations, this object is initialized from the Posix stderr ob-
ject. Note that although stderr itself is a constant binding, it
may be connected to different files by the reconnect operation.

16.15.4 Buffer management

16.15.25 fill-buffer generic function

Generic Arguments

stream <buffered-stream>: A stream.

Result

The buffer associated with stream is refilled from its source.
Returns a count of the number of items read.

Remarks
This function is guaranteed to be called when an attempt is

made to read from a buffered stream whose buffer is either
empty, or from which all the items have been read.

16.15.26 fill-buffer <buffered-stream> method
Specialized Arguments

stream <buffered-stream>: A stream.
16.15.27 fill-buffer <file-stream> method

Specialized Arguments

stream <file-stream>: A stream.

16.15.28 flush-buffer generic function

Generic Arguments

stream <buffered-stream>: A stream.

67

Programming Language EuLisp:2010(E)

Result

The contents of the buffer associated with stream is flushed
to its sink. If this operation succeeds, a t value is returned,
otherwise the result is ().

Remarks

This function is guaranteed to be called when an attempt is
made to write to a buffered stream whose buffer is full.

16.15.29 flush-buffer <buffered-stream> method

Specialized Arguments
stream <buffered-stream>: A stream.

Result

The contents of the buffer associated with stream is flushed
to its sink. If this operation succeeds, a t value is returned,
otherwise the result is ().

Remarks

Implements the flush-buffer operation for objects of class
<buffered-stream>.

16.15.30 flush-buffer <file-stream> method

Specialized Arguments

stream <file-stream>: A stream.

Result

The contents of the buffer associated with stream is flushed
to its sink. If this operation succeeds, a t value is returned,
otherwise the result is ().

Remarks

Implements the flush-buffer operation for objects of
<file-stream>. This method is called both when the buffer is
full and after a newline character is written to the buffer.

16.15.31 <end-of-stream>

<stream-condition> condition

Initialization Options

stream <stream>: A stream.

Remarks

Signalled by the default end of stream action, as a consequence
of a read operation on stream, when it is at end of stream.

See also

generic-read.

16.15.32 end-of-stream generic function

Generic Arguments

stream <buffered-stream>: A stream.

Remarks

This function is guaranteed to be called when a read operation
encounters the end of stream and the eos-error? argument to
read has a non-() value.

68

Version 0.991

16.15.33 end-of-stream <buffered-stream> method

Specialized Arguments
stream <buffered-stream>: A stream.

Remarks

Signals the end of stream condition.

16.15.34 end-of-stream <file-stream> method

Specialized Arguments

stream <file-stream>: A stream.

Remarks

Disconnects stream and signals the end of stream condition.

16.15.5 Reading from streams

16.15.35 <read-error> <condition> condition

Generic Arguments
stream <stream>: A stream.

Remarks

Signalled by a read operation which fails in some manner other
than when it is at end of stream.

16.15.36 read function

Arguments

streamopt : A stream.
€0s-erroT%opt © A boolean.

eos-valueopt : Value to be returned to indicate end of
stream.

Result

That of calling generic-read with the arguments supplied or
defaulted as described.

Remarks

The stream defaults to lispin, eos-error? defaults to () and
eos-value defaults to eos-default-value.

16.15.37 generic-read generic function

Generic Arguments

stream <stream>: A stream.
eos-error? <object>: A boolean.

eos-value <object>: Value to be returned to indicate
end of stream.

Result
The next transaction unit from stream.

Version 0.991

Remarks

If the end of stream is encountered and the value of eos-error?
is (), the result is eos-value. If the end of stream is encoun-
tered and the value of eos-error? is non-(), the function
end-of-stream <stream> is called with the argument stream.

16.15.38 generic-read <stream> method

Specialized Arguments

stream <stream>: A stream.
eos-error? <object>: A boolean.

eos-value <object>: Value to be returned to indicate
end of stream.

Result

That of calling the read-action of stream with the arguments
stream, eos-error? and eos-value. Returns t.

Remarks

Implements the generic-read operation for objects of class
<stream>.

16.15.39 generic-read <buffered-stream> method

Specialized Arguments

stream <buffered-stream>: A buffered stream.
eos-error? <object>: A boolean.

eos-value <object>: Value to be returned to indicate
end of stream.

Result

The next object stored in the stream buffer. If the buffer is
empty, the function fill-buffer is called. If the refilling op-
eration did not succeed, the end of stream action is carried out
as described under generic-read. Returns t.

Remarks

Implements the generic-read operation for objects of class
<buffered-stream>.

16.15.40 generic-read <file-stream> method

Specialized Arguments
stream <file-stream>: A file stream.

eos-error? <object>: A boolean.

eos-value <object>: Value to be returned to indicate
end of stream.

Result

The next object stored in the stream buffer. If the buffer is
empty, the function fill-buffer is called. If the refilling op-
eration did not succeed, the end of stream action is carried out
as described under generic-read. Returns t.

Programming Language EuLisp:2010(E)

Remarks

Implements the generic-read operation for objects of class
<file-stream>.

16.15.6 Writing to streams

16.15.41 generic-write generic function

Generic Arguments

object <object>: An object to be written to stream.

stream <stream>: Stream to which object is to be
written.

Result
Returns object.

Remarks

Outputs the external representation of object on the output
stream stream.

See also

The following generic-write methods are de-
fined: generic-write <character>, generic-write
<symbol>, generic-write <keyword>, generic-write
<fpi>, generic-write <double-float>, generic-write

<null>, generic-write <cons>, generic-write
<list>, generic-write <string>, generic-write
<vector>, generic-write <stream>, generic-write

<buffered-stream> and generic-write <file-stream>.

16.15.42 generic-write <stream> method

Specialized Arguments
object <object>: An object to be written to stream.

stream <stream>: Stream to which object is to be
written.

16.15.43 generic-write <buffered-stream> method

Specialized Arguments

object <object>: An object to be written to stream.

stream <buffered-stream>: Stream to which object
is to be written.

16.15.44 generic-write <file-stream> method

Specialized Arguments
object <object>: An object to be written to stream.

stream <file-stream>: Stream to which object is to
be written.

16.15.45 swrite function

Arguments

stream: Stream to which object is to be written.

object: An object to be written to stream.

69

Programming Language EuLisp:2010(E)

Result
Returns stream.

Remarks

Outputs the external representation of object on the output
stream stream using generic-write.

See also

generic-write.

16.15.46 write Sfunction

Arguments

object: An object to be written to stream.

Result
Returns stdout.

Remarks
Outputs the external representation of object on stdout using

generic-write.

See also

swrite, generic-write.

16.15.7 Additional functions

16.15.47 read-line Sfunction

Arguments

stream: A stream.
eos-errorZopt : A boolean.

eos-valueop: : Value to be returned to indicate end of
stream.

Result
A string.

Remarks

Reads a line (terminated by a newline character or the end
of the stream) from the stream of characters which is stream.
Returns the line as a string, discarding the terminating newline,
if any. If the stream is already at end of stream, then the stream
action is called: the default stream action is to signal an error:
(condition class: <end-of-stream>).

16.15.48 generic-print generic function

Generic Arguments

object <object>: An object to be output on stream.

stream <stream>: A character stream on which ob-
ject is to be output.

Result
Returns object.

70

Version 0.991

Remarks

Outputs the external representation of object on the output
stream stream.

See also

prin. The following generic-write methods are de-

fined: generic-write <character>, generic-write
<symbol>, generic-write <keyword>, generic-write
<fpi>, generic-write <double-float>, generic-write
<null>, generic-write <cons>, generic-write <list>,

generic-write <string> and generic-write <vector>.

16.15.49 sprint function

Arguments

stream: A character stream on which object is to be
output.

objecti objecty ...opt : A sequence of objects to be out-
put on stream.

Result
Returns stream.

Remarks

Outputs the external representation of object: objectz ... on the
output stream stream using generic-print for each object.

See also

generic-print.

16.15.50 print function

Arguments

objecty objecty ...opt : A sequence of objects to be out-
put on stdout.

Result
Returns stdout.

Remarks

Outputs the external representation of object; objectz ... on
the output stream stdout using sprint for each object.

See also

sprint and generic-print.

16.15.51 sflush function
Arguments

stream: A stream to flush.

Result
Returns stream.

Remarks

sflush causes any buffered data for the stream to be written
to the stream. The stream remains open.

Version 0.991

Programming Language EuLisp:2010(E)

16.15.52 flush function

16.15.57 open-output-file function

Result
Returns stdout.

Remarks

flush causes any buffered data for stdout to be written to
stdout.

See also
sflush.

16.15.53 sprin-char Sfunction

Arguments
stream: A stream.

char: Character to be written to stream.

timesopt : Integer count.

Result

Outputs char on stream. The optional count times defaults to
1.

16.15.54 prin-char Sfunction

Arguments
char: Character to be written to stdout.

timesop: : Integer count.

Result

Outputs char on stdout. The optional count times defaults to
1.

See also

sprin-char.

16.15.55 sread function

Arguments
stream: A stream.

€os-error%opt © A boolean.

eos-valueopt : Value to be returned to indicate end of
stream.

16.15.8 Convenience forms

Arguments

path: A path identifying a file system object.

Result

Allocates and returns a new <file-stream> object whose sink
is connected to the file system object identified by path.

16.15.58 with-input-file special operator

16.15.58.1 Syntax

16.15.56 open-input-file Sfunction

Arguments
path: A path identifying a file system object.

Result

Allocates and returns a new <file-stream> object whose
source is connected to the file system object identified by path.

with-input-file-form: — <object>
(with-input-file path
body)
path:
string

16.15.59 with-output-file special operator

16.15.59.1 Syntax

with-output-file-form: — <object>
(with-output-file path
body)

16.15.60 with-source special operator

16.15.60.1 Syntax

with-source-form: — <object>
(with-source (identifier form)

body)

16.15.61 with-sink special operator

16.15.61.1 Syntax

with-sink-form: — <object>
(with-sink (identifier form)
body)

71

Programming Language EuLisp:2010(E)
16.16 Strings

The defined name of this module is string. See also sec-
tion 16.2 (collections) for further operations on strings.

16.16.1 string syntax

String literals are delimited by the glyph called quotation mark
("). For example, "abecd".

Sometimes it might be desirable to include string delimiter
characters in strings. The aim of escaping in strings is to ful-
fill this need. The string-escape glyph is defined as reverse
solidus (\). String escaping can also be used to include certain
other characters that would otherwise be difficult to denote.
The set of named special characters (see § 9.1 and § 16.1) are
included in strings using the character digrams defined in ta-
ble 16.1. To allow arbitrary characters to appear in strings,
the hex-insertion digram is followed by an integer denoting the
position of the character in the current character set as for char-
acters (see § 9.1). The syntax for the external representation
of strings is defined in syntax table 16.16.1.1 below:

16.16.1.1 Syntax

string:
" string-constituent
string-constituent:
normal-string-constituent
digram-string-constituent
numeric string constituent
normal-string-constituent:
level-0-character other than " or \
digram-string-constituent: one of
\a \b \d \£ \1 \n \r \e \v "\
numeric-string-constituent:
\x hezadecimal-digit
\x hezadecimal-digit hexadecimal-digit
\x hezadecimal-digit hexadecimal-digit
hezadecimal-digit
\x hezadecimal-digit hexadecimal-digit
hezadecimal-digit hexadecimal-digit

ko

Some examples of string literals appear in table 1.

Example 1 — Examples of string literals

Example Contents

"a\nb" #\a, #\n and #\b

"e\\" #\c and #\\

"\x1 " #\x1 followed by #\space
"\xabcde" #\xabcd followed by #\e
"\x1\x2" #\x1 followed by #\x2
"\x12+" #\x12 followed by #\+
"\xabcg" #\xabc followed by #\g
"\x00abc" #\xab followed by #\c

NOTE 1 At present this document refers to the “current character
set” but defines no means of selecting alternative character sets.
This is to allow for future extensions and implementation-defined
extensions which support more than one character set.

The function write outputs a re-readable form of any escaped
characters in the string. For example, "a\n\\b" (input no-
tation) is the string containing the characters #\n, #\a, #\\
and #\b. The function write produces "a\n\\b", whilst prin
produces

a

72

Version 0.991

\b

The function write outputs characters which do not have a
glyph associated with their position in the character set as a
hex insertion in which all four hex digits are specified, even if
there are leading zeros, as in the last example in table 1. The
function prin outputs the interpretation of the characters ac-
cording to the definitions in section 16.1 without the delimiting
quotation marks.

16.16.2 <string> <character-sequence> class

The class of all instances of <string>.

Initialization Options
size <fpi>: The number of characters in the string.
Strings are zero-based and thus the maximum
index is size-1. If not specified the size is zero.

fill-value: <character>: A character with which
to initialize the string. The default fill character

is #\xO0.
Examples
(make <string>) = "
(make <string> size: 2) = "\x0000\x0000"
(make <string> size: 3 = '"aaa"

fill-value: #\a)

16.16.3 string? function
Arguments
object: Object to examine.
Result
Returns object if it is a string, otherwise ().
16.16.4 (converter <symbol>) converter

Specialized Arguments

string <string>: A string to be converted to a sym-
bol.

Result

If the result of symbol-exists? when applied to string is a
symbol, that symbol is returned. If the result is (), then a new
symbol is constructed whose name is string. This new symbol
is returned.

16.16.5 Dbinary= <string> method

Specialized Arguments
string; <string>: A string.

strings <string>: A string.

Result

If the size of string: is the same (under =) as that of strings,
and the result of the conjunction of the pairwise application
of binary= <character> to the elements of the arguments is t
the result is string:. If not the result is ().

Version 0.991

Programming Language EuLisp:2010(E)

16.16.6 deep-copy <string> method

16.16.10 as-uppercase <string> method

Specialized Arguments

string <string>: A string.

Result

Constructs and returns a copy of string in which each element
is eql to the corresponding element in string.

16.16.7 shallow-copy <string> method

Specialized Arguments

string <string>: A string.

Result

Constructs and returns a copy of string in which each element
is eql to the corresponding element in string.

16.16.8 Dbinary< <string> method

Specialized Arguments
string: <string>: A string.

strings <string>: A string.

Result

If the second argument is longer than the first, the result is ().
Otherwise, if the sequence of characters in string; is pairwise
less than that in strings according to binary< <character>
the result is t. Otherwise the result is (). Since it is an error
to compare lower case, upper case and digit characters with
any other kind than themselves, so it is an error to compare
two strings which require such comparisons and the results are
undefined.

Examples
(< ngn "b") = t
(< npn o ngn = ()
(< ngn nan) = ()
(< ngn Ilabll) = t
(< nap" nau) = ()
(< nAM IlBll) = t
(< non ||1n) = t
(< ngq" lla2ll) = t

(< lla1I| llbbll) :> t
(< "al" "ab") = wundefined

See also
Method binary< <character> (16.3) for characters (16.1).

16.16.9 as-lowercase <string> method

Specialized Arguments

string <string>: A string.

Result

Returns a copy of string in which each character denoting an
upper case character, is replaced by a character denoting its
lower case counterpart. The result must not be eq to string.

Specialized Arguments

string <string>: A string.

Result

Returns a copy of string in which each character denoting an
lower case character, is replaced by a character denoting its
upper case counterpart. The result must not be eq to string.

16.16.11 generic-print <string> method

Specialized Arguments

string <string>: String to be ouptut on stream.

stream <stream>: Stream on which string is to be
ouptut.

Result

The string string. Output external representation of string on
stream as described in the introduction to this section, inter-
preting each of the characters in the string. The opening and
closing quotation marks are not output.

16.16.12 generic-write <string> method

Specialized Arguments

string <string>: String to be ouptut on stream.

stream <stream>: Stream on which string is to be
ouptut.

Result

The string string. Output external representation of string
on stream as described in the introduction to this section, re-
placing single characters with escape sequences if necessary.
Opening and closing quotation marks are output.

73

Programming Language EuLisp:2010(E)

16.17 Symbols

The defined name of this module is symbol.

16.17.1 symbol syntax

A symbol is a literal identifier and hence has the same syntax
9.3.0.3:

16.17.1.1 Syntax

symbol:
identifier

Because there are two escaping mechanisms and because the
first character of a token affects the interpretation of the re-
mainder, there are many ways in which to input the same iden-
tifier. If this same identifier is used as a literal, i.e. a symbol,
the results of processing each token denoting the identifier will
be eq to one another. For example, the following tokens all
denote the same symbol:

11231, \123, [1]23, | 123, ||]]123

which will be output by the function write as 1123[. If output
by write, the representation of the symbol will permit recon-
struction by read—escape characters are preserved—so that
equivalence is maintained between read and write for symbols.
For example: |la(b| and abc.def are two symbols as output by
write such that read can read them as two symbols. If output
by prin, the escapes necessary to re-read the symbol will not be
included. Thus, taking the same examples, prin outputs a(b
and abc.def, which read interprets as the symbol a followed
by the start of a list, the symbol b and the symbol abc.def.

Computationally, the most important aspect of symbols is that
each is unique, or, stated the other way around: the result of
processing every syntactic token comprising the same sequence
of characters which denote an identifier is the same object. Or,
more briefly, every identifier with the same name denotes the
same symbol.

16.17.2 <symbol> <name> class

The class of all instances of <symbol>.

Initialization Options

string string: The string containing the characters
to be used to name the symbol. The default value
for string is the empty string, thus resulting in
the symbol with no name, written ||.

16.17.3 symbol? function

Arguments
object: Object to examine.

Result
Returns object if it is a symbol.

16.17.4 gensym function

74

Version 0.991

Arguments

stringopt : A string contain characters to be
prepended to the name of the new symbol.

Result

Makes a new symbol whose name, by default, begins with the
character #\g and the remaining characters are generated by
an implementation-defined mechanism. Optionally, an alter-
native prefix string for the name may be specified. It is guar-
anteed that the resulting symbol did not exist before the call
to gensym.

16.17.5 symbol-name function

Arguments

symbol: A symbol.

Result

Returns a string which is binary= <string> to that given as
the argument to the call to make which created symbol. It is
an error to modify this string.

16.17.6 symbol-exists? function

Arguments

string: A string containing the characters to be used
to determine the existence of a symbol with that
name.

Result

Returns the symbol whose name is string if that symbol has
already been constructed by make. Otherwise, returns ().

16.17.7 generic-print <symbol> method

Specialized Arguments

symbol <symbol>: The symbol to be output on
stream.

stream <stream>: The stream on which the represen-
tation is to be output.

Result
The symbol supplied as the first argument.

Remarks

Outputs the external representation of symbol on stream as
described in the introduction to this section, interpreting each
of the characters in the name.

16.17.8 generic-write <symbol> method

Specialized Arguments

symbol <symbol>: The symbol to be output on
stream.

stream <stream>: The stream on which the represen-
tation is to be output.

Version 0.991

Result
The symbol supplied as the first argument.

Remarks

Outputs the external representation of symbol on stream as
described in the introduction to this section. If any characters
in the name would not normally be legal constituents of an
identifier or symbol, the output is preceded and succeeded by
multiple-escape characters.

Programming Language EuLisp:2010(E)

16.18 Tables

The defined name of this module is table. See also section 16.2
(collections) for further operations on tables.

16.18.1 <table> <collection> class

Examples

(write (make <symbol> ’string "abc")) = abc
(write (make <symbol> ’string "a c")) = |a cl
(write (make <symbol> ’string ").(")) = 1).(l
16.17.9 (converter <string>) converter

Specialized Arguments

symbol <symbol>: A symbol to be converted to a
string.

Result
A string.

Remarks

This function is the same as symbol-name. It is defined for the
sake of symmetry.

The class of all instances of <table>.

Initialization Options

comparator: <function>: The function to be used
to compare keys. The default comparison func-
tion is eql.

fill-value: <object>: An object which will be re-
turned as the default value for any key which
does not have an associated value. The default
fill value is Q).

hash-function: <function>: The function to be
used to compute an unique key for each object
stored in the table. This function must return a
fixed precision integer. The hash function must
also satisfy the constraint that if the comparison
function returns t for any two objects, then the
hash function must return the same key when
applied to those two objects. The default is an
implementation defined function which satisfies
these conditions.

16.18.2 table? function

Arguments
object: Object to examine.

Result
Returns object if it is a table, otherwise ().

16.18.3 clear-table function

Arguments

table: A table.

Result
An empty table.

Remarks

All entries in table are deleted. The result is eq to the argu-
ment, which is to say that the argument is modified.

16.18.4 <hash-table> <table> class

Place holder for <hash-table> class.

75

Programming Language EuLisp:2010(E)

16.19 Vectors

The defined name of this module is vector. See also sec-
tion 16.2 (collections) for further operations on vectors.

16.19.1 vector syntax

Version 0.991

Result

If the size of vector; is the same (under =) as that of vectors,
and the result of the conjunction of the pairwise application
of binary= to the elements of the arguments t the result is
vector:. If not the result is ().

A vector is written as #(obj; ... 0bj,). For example: #(1 2 3)
is a vector of three elements, the integers 1, 2 and 3. The
representations of obj; are determined by the external rep-
resentations defined in other sections of this definition (see
<character> (16.1), <fpi> (16.9), <float> (16.7), <list>
(16.12), <string> (16.16) and <symbol> (16.17), as well as in-
stances of <vector> itself. The syntax for the external repre-
sentation of vectors is defined below.

16.19.1.1 Syntax

16.19.6 deep-copy <vector> method

Specialized Arguments

vector <vector>: A vector.

Result

Constructs and returns a copy of vector, in which each element
is the result of calling deep-copy on the corresponding element
of wvector.

vector:
#(object”)

16.19.7 shallow-copy <vector> method

16.19.2 <vector> <sequence> class

The class of all instances of <vector>.

Initialization Options
size: <fpi>: The number of elements in the vector.
Vectors are zero-based and thus the maximum
index is size-1. If not supplied the size is zero.

fill-value: <object>: An object with which to ini-
tialize the vector. The default fill value is ().

Examples

(make <vector>) = #0

(make <vector> size: 2) = #((O ()

(make <vector> size: 3 = #(#\a #\a #\a)
fill-value: #\a)

Specialized Arguments

vector <vector>: A vector.

Result

Constructs and returns a copy of vector in which each element
is eql to the corresponding element in wvector.

16.19.8 generic-print <vector> method

16.19.3 vector? function

Arguments
object: Object to examine.

Result
Returns object if it is a vector, otherwise ().

Specialized Arguments
vector <vector>: A vector to be ouptut on stream.

stream <stream>: A stream on which the represen-
tation is to be output.

Result
The vector supplied as the first argument.

Remarks

Output the external representation of vector on stream as de-
scribed in the introduction to this section. Calls the generic
function again to produce the external representation of the
elements stored in the vector.

16.19.9 generic-write <vector> method

16.19.4 maximum-vector-index <integer> constant

Remarks

This is an implementation-defined constant. A conforming pro-
cessor must support a maximum vector index of at least 32767.

16.19.5 Dbinary= <vector> method

Specialized Arguments
vector; <vector>: A vector.

vectors <vector>: A vector.

76

Specialized Arguments

vector <vector>: A vector to be ouptut on stream.

stream <stream>: A stream on which the represen-
tation is to be output.

Remarks

Output the external representation of vector on stream as de-
scribed in the introduction to this section. Calls the generic
function again to produce the external representation of the
elements stored in the vector.

Version 0.991

16.20 Syntax of Level-0 objects

This section repeats the syntax for reading and writing of the
various classes defined in §16.

object:
literal
list §16.12
symbol §16.17
literal:
boolean
character 816.1
float 816.7
integer 816.10
string 816.16
vector §16.19
boolean:
true
false
true:
t
object not ()
false:
O
nil
character:
literal-character-token
special-character-token
numeric-character-token
literal-character-token:
#\letter
#\ decimal-digit
#\ other-character
#\ special-character
special-character-token:
#\\a
#\\b
#\\d
#\\f
#\\1
#\\n
#\\r
#\\t
#\\v
#\\ n
A\

numeric-character-token:

#\\x hezadecimal-digit hexadecimal-digit

hexadecimal-digit hexadecimal-digit

float:

Signopt unsigned-float exponentp:
unsigned-float:

float-format-1

float-format-2

float-format-3
float-format-1:

decimal-integer .
float-format-2:

decimal-integer

float-format-3:

float-format-1 decimal-integer
exponent:

double-exponent
double-exponent:

d signopt decimal-integer

D signop: decimal-integer

Programming Language EuLisp:2010(E)

integer:

SigNopt unsigned-integer
sign: one of

+ -

unsigned-integer:
binary-integer
octal-integer
decimal-integer
hezxadecimal-integer
specified-base-integer
binary-integer:
#b binary-digit™
binary-digit: one of
01
octal-integer:
#o octal-digit™
octal-digit: one of
01234567
decimal-integer:
decimal-digit™
hexadecimal-integer:
#x hexadecimal-digit™
hezxadecimal-digit:
decimal-digit
hez-lower-letter
hex-upper-letter
hex-lower-letter: one of
abcdef
hex-upper-letter: one of
ABCDEF
specified-base-integer:
base-specification r
specified-base-digit
specified-base-digit”
base-specification:
{213141l5161l71819}
{11 2} decimal-digit
3{ol11213141516¢6}
specified-base-digit:
decimal-digit

letter
keyword:
identifier:
null:
O
pair:
(object . object)
list:
empty-list
proper-list
improper-list
empty-list:
O
proper-list:
(object™)
improper-list:
(object™ object)

7

Programming Language EuLisp:2010(E)

string:
" string-constituent
string-constituent:
normal-string-constituent
digram-string-constituent
numeric string constituent
normal-string-constituent:
level-0-character other than " or \
digram-string-constituent: one of
\a \b \d V£ \1 \n \r Ve \v A"\
numeric-string-constituent:
\x hezadecimal-digit
\x hezadecimal-digit hezadecimal-digit
\x hezadecimal-digit hexadecimal-digit
hexadecimal-digit
\x hezadecimal-digit hexadecimal-digit
hexadecimal-digit hexadecimal-digit

*on

symbol:
identifier

vector:

#(object™)

17 Programming Language EuLisp, Level-1

This section describes the additions features in EULISP level-1

including the reflective aspects of the object system and how
to program the metaobject protocol and support for dynamic

variable and related control forms.

17.1 Modules

Version 0.991

17.2 Classes and Objects

17.2.1 defclass defining operator

17.2.1.1 Syntax

defclass-1-form:
(defclass class-name superclass-names
(slot-1")
class-option-1*)
superclass-names:
O
superclass-name
(superclass-name™)
slot-1:
slot
(slot-name slot-option-1*)
slot-option-1:
slot-option
identifier level-1-form
class-option-1
class-option
class: class-name
identifier level-1-form

defmodule-1-form:

(defmodule module-name
module-directives
level-1-module-form™)

level-1-module-form:
level-0-module-form
level-1-form
defining-1-form
level-1-form:

level-0-form

special-1-form

form:

level-1-form

special-form:

special-1-form

defining-1-form:

defclass-1-form

defgeneric-1-form

defglobal-form
special-1-form:

generic-lambda-form

method-lambda-form
defmethod-form
method-function-lambda-form
catch-form

throw-form

78

Arguments

superclass-names: Either a symbol or a list of sym-
bols naming bindings of the class/classes to be
used as the superclass/superclasses of the new
class (multiple inheritance). If this list of super-
class names is empty, the superclass is <object>.
This is different from defclass at level-0, where
only one superclass may be specified.

slot-1: A list of slot specifications (see below), com-
prising either a slot-name or a list of a slot-name
followed by some slot-options. One of the class
options (see below) allows the specification of the
class of the slot description.

class-option-1: A key and a value (see below). One
of the class options (<class>) allows the specifi-
cation of the class of the class being defined.

Remarks

This defining form defines a new class. The resulting class will
be bound to class-name. All the slot and class options are
exactly the same as for defclass (11.3).

The slot-option-1s are interpreted as follows:

identifier level-1-form: The symbol named by identi-
fier and the value of expression are passed to make
of the slot description class along with other slot
options. The values are evaluated in the lexical
and dynamic environment of the defclass. For
the language defined slot description classes, no
slot keywords are defined which are not specified
by particular defclass slot options.

The class-option-1s are interpreted as follows:
class class-name: The value of this option is the
class of the new class. By default, this is <class>.
This option must only be specified once for the
new class.

identifier level-1-form: The symbol named by iden-
tifier and the value of expression are passed to
make on the class of the new class. This list is
appended to the end of the list that defclass

Version 0.991

constructs. The values are evaluated in the lex-
ical and dynamic environment of the defclass.
This option is used for metaclasses which need
extra information not provided by the standard
options.

17.3 Generic Functions

17.3.1 generic-lambda special operator

17.3.1.1 Syntax

generic-lambda-form:
(generic-lambda gf-lambda-list
level-1-init-option™)
level-1-init-option:
class class-name
method-class class-name
method level-1-method-description
identifier level-1-form
level-0-init-option
level-1-method-description:
(method-init-option*
specialized-lambda-list
body)
method-init-option:
class class-name
identifier level-1-form

Arguments
gf-lambda-list: As level-0. See section 11.4.

level-1-init-option™ : Format as level-0, but with ad-
ditional options, which are defined below.

Result
A generic function.

Remarks

The syntax of generic-lambda is an extension of the level-0
syntax allowing additional init-options. These allow the spec-
ification of the class of the new generic function, which de-
faults to <generic-function>, the class of all methods, which
defaults to <method>, and non-standard options. The lat-
ter are evaluated in the lexical and dynamic environment of
generic-lambda and passed to make of the generic function
as additional initialization arguments. The additional init-
options over level-0 are interpreted as follows:
class gf-class: The class of the new generic function.
This must be a subclass of <generic-function>.
The default is <generic-function>.

method-class method-class: The class of all methods
to be defined on this generic function. All meth-
ods of a generic function must be instances of
this class. The method-class must be a subclass
of <method> and defaults to <method>.

identifier expression: The symbol named by iden-
tifier and the value of expression are passed to
make as keywords. The values are evaluated
in the lexical and dynamic environment of the
defgeneric. This option is used for classes which
need extra information not provided by the stan-
dard options.

In addition, method init options can be specified for the indi-
vidual methods on a generic function. These are interpreted
as follows:

Programming Language EuLisp:2010(E)

class method-class: The class of the method to be
defined. The method class must be a subclass
of <method> and is, by default, <method>. The
value is passed to make as the first argument. The
symbol and the value are not passed as keywords
to make.

identifier expression: The symbol named by iden-
tifier and the value of expression are passed to
make creating a new method as keywords. The
values are evaluated in the lexical and dynamic
environment of the generic-lambda. This option
is used for classes which need extra information
not provided by the standard options.

Examples

In the following example an anonymous version of gf-1 (see
defgeneric) is defined. In all other respects the resulting ob-
ject is the same as gf-1.

(generic-lambda (argl (arg2 <class-a>))
class <another-gf-class>
class-key-a class-value-a
class-key-b class-value-b

method-class <another-method-class-a>

method (class <another-method-class-b>

method-class-b-key-a method-class-b-value-a

((ml-argl <class-b>) (ml-arg2 <class-c>))

o)
method (method-class-a-key-a method-class-a-value-a
((m2-argl <class-d>) (m2-arg2 <class-e>))

)

method (class <another-method-class-c>

method-class-c-key-a method-class-c-value-a

((m3-argl <class-f>) (m3-arg2 <class-g>))0
)

See also
defgeneric.

17.3.2 defgeneric defining operator

17.3.2.1 Syntax

defgeneric-1-form:
(defgeneric gf-name gf-lambda-list
level-1-init-option)

Arguments

gf name: As level-0. See section 11.4.
gf lambda list: As level-0. See section 11.4.

init option™ : As for generic-lambda, defined above.
below.

Remarks

This defining form defines a new generic function. The result-
ing generic function will be bound to gf-name. The second
argument is the formal parameter list. An error is signalled
(condition: <non-congruent-lambda-lists>) if any of the
methods defined on this generic function do not have lambda
lists congruent to that of the generic function. This applies

79

Programming Language EuLisp:2010(E)

both to methods defined at the same time as the generic func-
tion and to any methods added subsequently by defmethod or
add-method. An init-option is a identifier followed by its initial
value. The syntax of defgeneric is an extension of the level-0
syntax. The rewrite rules for the defgeneric form are iden-
tical to those given in section 11.4.5.2 except that level 1 init
option replaces level 0 init option.

Examples

In the following example of the use of defgeneric a generic
function named gf-1 is defined. The differences between this
function and gf-0 (see 11.4) are

a) The class of the generic function is specified
(<another-gf-class>) along with some init-options
related to the creation of an instance of that class.

The default class of the methods to be attached to the
generic function is specified (<another-method-class-a>)
along with an init-option related to the creation of an in-
stance of that class.

¢) In addition, some of the methods to be attached are
of a different method class (<another-method-class-b>
and <another-method-class-c>) also with method spe-
cific init-options. These method classes are subclasses of
<another-method-class-a>.

(defgeneric gf-1 (argl (arg2 <class-a>))
class <another-gf-class>
class-key-a class-value-a
class-key-b class-value-b

method-class <another-method-class-a>

method (class <another-method-class-b>

Version 0.991

Result

This syntax creates and returns an anonymous method with
the given lambda list and body. This anonymous method can
later be added to a generic function with a congruent lambda
list via the generic function add-method. Note that the lambda
list can be specialized to specify the method’s domain. The
value of the special keywords <class> determines the class to
instantiate; the rest of the initlist is passed to make called with
this class. The default method class is <method>.

Remarks

The additional method-init-options includes <class>, for spec-
ifying the class of the method to be defined, and non-standard
options, which are evaluated in the lexical and dynamic envi-
ronment of method-lambda and passed to initialize of that
method.

17.4.2 defmethod defining operator

17.4.2.1

defmethod-1-form:

(defmethod gf-locator
method-init-option™
specialized-lambda-list
body)

Syntax

Remarks

The defmethod form of level-1 extends that of level-0 to accept
method-init-options. This allows for the specification of the
method class by means of the <class> init option. This class
must be a subclass of the method class of the host generic
function. The method class otherwise defaults to that of the
host generic function. In all other respects, the behaviour is as

method-class-b-key-a method-class-b-value-4hat defined in level-0.

((ml-argl <class-b>) (ml-arg2 <class-c>))
)

method (method-class-a-key-a method-class-a-value-d47.4.3

((m2-argl <class-d>) (m2-arg2 <class-e>))
)

method (class <another-method-class-c>

method-class-c-key-a method-class-c-value-a

((m3-argl <class-f>) (m3-arg2 <class-g>))
)

17.4 Methods

17.4.1 method-lambda special operator

17.4.1.1 Syntax

method-lambda-form: — <function>
(method-lambda
method-init-option™
specialized-lambda-list
body)

Arguments

method init option: A quoted symbol followed by an
expression.

specialized lambda list: As defined under

generic-lambda.

form: An expression.

80

method-function-lambda special operator

Arguments

lambda-list: A lambda list
form™ : A sequence of forms.

This syntax operator creates and returns an anonymous
method function with the given lambda list and body. This
anonymous method function can later be added to a method
using method-function, or as the function initialization value
in a call of make on an instance of <method>. A function of this
type is also returned by the method accessor method-function.
Only functions created using this syntax operator can be used
as method functions. Note that the lambda list must not be
specialized; a method’s domain is stored in the method itself.

17.4.4 call-method function

Arguments

method: A method.
next-methods: A list of methods.
arg”: A sequence of expressions.

This function calls the method method with arguments args.
The argument next-methods is a list of methods which are used

Version 0.991

as the applicable method list for args; it is an error if this
list is different from the methods which would be produced by
the method lookup function of the generic function of method.
If method is not attached to a generic function, its behavior
is unspecified. The next-methods are used to determine the
next method to call when call-next-method is called within
method-fn.

17.4.5 apply-method Sfunction

Arguments
method: A method.

next-methods: A list of methods.
forma ... formn_1: A sequence of expressions.

form, : An expression.
This function is identical to call-method except that its last
argument is a list whose elements are the other arguments to

pass to the method’s method function. The difference is the
same as that between normal function application and apply.

Programming Language EuLisp:2010(E)

17.5 Object Introspection

The only reflective capability which every object possesses is
the ability to find its class.

17.5.1 class-of function

Arguments

object: An object.

Result
The class of the object.

Remarks

The function class-of can take any LISP object as argument
and returns an instance of <class> representing the class of
that entity.

17.6 Class Introspection

Standard classes are not redefinable and support single inher-
itance only. General multiple inheritance can be provided by
extensions. Nor is it possible to use a class as a superclass
which is not defined at the time of class definition. Again, such
forward reference facilities can be provided by extensions. The
distinction between metaclasses and non-metaclasses is made
explicit by a special class, named <metaclass>, which is the
class of all metaclasses. This is different from ObjVlisp, where
whether a class is a metaclass depends on the superclass list
of the class in question. It is implementation-defined whether
<metaclass> itself is specializable or not. This implies that
implementations are free to restrict the instantiation tree (ex-
cluding the selfinstantiation loop of <metaclass>) to a depth
of three levels. The metaclasses defined at level-1 are shown in
table 5.

Table 5 — Level-1 metaclass hierarchy

A <object> See level-0 table 1
A <class>
C <simple-class>
C <function-class>

The minimum information associated with a class metaobject
is:

a) The class precedence list, ordered most specific first, be-
ginning with the class itself.

b) The list of (effective) slot descriptions.

¢) The list of (effective) keywords.

Standard classes support local slots only. Shared slots can be
provided by extensions. The minimal information associated
with a slot description metaobject is:

a) The name, which is required to perform inheritance com-
putations.

b) The default-function, called by default to compute the ini-
tial slot value when creating a new instance.

¢) The reader, which is a function to read the corresponding
slot value of an instance.

81

Programming Language EuLisp:2010(E)

d) The writer, which is a function to write the corresponding
slot of an instance.

e) The keyword, which is a symbol to access the value which
can be supplied to a make call in order to initialize the
corresponding slot in a newly created object.

The metaobject classes defined for slot descriptions at level-1
are shown in table 6.

Table 6 — Level-1 class hierarchy

A <object> See level-0 table 1

A <slot>

C <local-slot>
A <function>

A <generic-function>

C <simple-generic-function>

A <method>

C <simple-method>

17.6.1 <metaclass> class
Place holder for <metaclass>.

17.6.2 <simple-class> <class> class
Place holder for <simple-class>.

17.6.3 <function-class> <class> class
Place holder for <function-class>.

17.6.4 class-name function
Arguments

class: A class.

Result

Returns a string which is binary= <string> to that given as
the argument to the call to defclass which created class. It is
an error to modify this string.

17.6.5 class-precedence-list function

Arguments
class: A class.

Result

A list of classes, starting with class itself, succeeded by the su-
perclasses of class and ending with <object>. This list is equiv-
alent to the result of calling compute-class-precedence-list.

Remarks

The class precedence list is used to control the inheritance of
slots and methods.

17.6.6 class-slots function

82

Version 0.991

Arguments

class: A class.

Result
A list of slots, one for each of the slots of an instance of class.

Remarks

The slots determine the instance size (number of slots) and the
slot access.

17.6.7 class-keywords function

Arguments
class: A class.

Result

A list of symbols, which can be used as legal keywords to ini-
tialize instances of the class.

Remarks

The keywords correspond to the keywords specified in the
keyword slot-option or the keywords class-option when the
class and its superclasses were defined.

17.7 Slot Introspection

17.7.1 <slot> class
The abstract class of all slot descriptions.
17.7.2 <local-slot> <slot> class

The class of all local slot descriptions.

Initialization Options
name string: The name of the slot.

reader function: The function to access the slot.

writer function: The function to update the slot.

default-function function: The function to com-
pute the initial value in the absence of a supplied

value.

keyword symbol: The key to access a supplied initial
value.

The default value for all initoptions is ().

17.7.3 slot-name function

Arguments
slot: A slot description.

Result

The symbol which was used to name the slot when the class,
of which the slot is part, was defined.

Remarks

The slot description name is used to identify a slot description
in a class. It has no effect on bindings.

Version 0.991

17.7.4 slot-default-function function

Arguments

slot: A slot description.

Result

A function of no arguments that is used to compute the initial
value of the slot in the absence of a supplied value.

17.7.5 slot-slot-reader Sfunction

Arguments

slot: A slot description.

Result

A function of one argument that returns the value of the slot
in that argument.

17.7.6 slot-slot-writer function

Arguments
slot: A slot description.

Result

A function of two arguments that installs the second argument
as the value of the slot in the first argument.

17.8 Generic Function Introspection
The default generic dispatch scheme is class-based; that is,
methods are class specific. The default argument precedence

order is left-to-right.

The minimum information associated with a generic function
metaobject is:

a) The domain, restricting the domain of each added method
to a sub-domain.

b) The method class, restricting each added method to be an
instance of that class.

¢) The list of all added methods.

d) The method look-up function used to collect and sort the
applicable methods for a given domain.

e) The discriminating function used to perform the generic
dispatch.

Programming Language EuLisp:2010(E)

strained to be within this domain. In other words, the domain
classes of each method must be subclasses of the corresponding
generic function domain class. It is an error to modify this list.

17.8.2 generic-function-method-class function

17.8.1 generic-function-domain function

Arguments

generic-function: A generic function.

Result
A list of classes.

Remarks

This function returns the domain of a generic function. The
domains of all methods attached to a generic function are con-

Arguments
generic-function: A generic function.

Result

This function returns the class which is the class of all meth-
ods of the generic function. Each method attached to a
generic function must be an instance of this class. When a
method is created using defmethod, method-lambda, or by us-
ing the method generic function option in a defgeneric or
generic-lambda, it will be an instance of this class by default.

17.8.3 generic-function-methods function

Arguments

generic-function: A generic function.

Result

This function returns a list of the methods attached to the
generic function. The order of the methods in this list is unde-
fined. It is an error to modify this list.

17.8.4 generic-function-method-lookup-function
function

Arguments

generic-function: A generic function.

Result
A function.

Remarks

This function returns a function which, when applied to the
arguments given to the generic function, returns a sorted list
of applicable methods. The order of the methods in this list is
determined by compute-method-lookup-function.

17.8.5 generic-function-discriminating-function
function

Arguments
generic-function: A generic function.

Result
A function.

Remarks

This function returns a function which may be applied to the
same arguments as the generic function. This function is called
to perform the generic dispatch operation to determine the ap-
plicable methods whenever the generic function is called, and
call the most specific applicable method function. This func-
tion is created by compute-discriminating-function.

83

Programming Language EuLisp:2010(E)

17.9 Method Introspection

The minimal information associated with a method metaobject
is:

a) The domain, which is a list of classes.
b) The function comprising the code of the method.

¢) The generic function to which the method has been added,
or () if it is attached to no generic function.

The metaobject classes for generic functions defined at level-1
are shown in table 6.

17.9.1 <method> class

Place holder for <method>.

17.9.2 <simple-method> <method> class

Place holder for <method-class>.

17.9.3 method-domain function
Arguments

method: A method.
Result
A list of classes defining the domain of a method.
17.9.4 method-function Sfunction
Arguments

method: A method.

Result

This function returns a function which implements the method.
The returned function which is called when method is called,
either by calling the generic function with appropriate argu-
ments, through a call-next-method, or by using call-method.
A method metaobject itself cannot be applied or called as a
function.

17.9.5 (setter method-function) setter

Arguments

method: A method.

function: A function.

Result
This function sets the function which implements the method.

17.9.6 method-generic-function function

Version 0.991

Result

This function returns the generic function to which method is
attached; if method is not attached to a generic function, it
returns ().

17.10 Class Initialization

17.10.1 initialize <class> method

Arguments
method: A method.

84

Specialized Arguments

class <class>: A class.

inatlist <list>: A list of initialization options as fol-
lows:

name symbol: Name of the class being
initialized.

direct-superclasses list: List of di-
rect superclasses.

direct-slots list: List of direct slot
specifications.

direct-keywords list: List of direct
keywords.

Result
The initialized class.

Remarks
The initialization of a class takes place as follows:

a) Check compatibility of direct superclasses

b) Perform the logical inheritance computations of:

1) class precedence list
2) keywords

3) slot descriptions

¢) Compute new slot accessors and ensure all (new and inher-
ited) accessors to work correctly on instances of the new
class.

d) Make the results accessible by class readers.

The basic call structure is laid out in figure 7 Note that
compute-keywords is called by the default initialize method
with all direct keywords as the second argument: those speci-
fied as slot option and those specified as class option.

17.10.2 compute-predicate generic function

Generic Arguments
class <class>: A class.

Result

Computes and returns a function of one argument, which is a
predicate function for class.

17.10.3 compute-predicate <class> method

Version 0.991

Table 7 — Initialization Call Structure

compatible-superclasses?
cl direct-superclasses — boolean
compatible-superclass?
cl superclass — boolean
compute-class—-precedence-list
cl direct-superclasses — (cl™)
compute-inherited-keywords
cl direct-superclasses — ((keyword™)™)
compute-keywords
cl direct-keywords inherited-keywords
— (keyword™)
compute-inherited-slots
cl direct-superclasses — ((sd™)™)
compute-slots
cl slot-specs inherited-sds — (sd™)
etther
compute-defined-slot
cl slot-spec — sd
compute-defined-slot-description-class
cl slot-spec — sd-class
or
compute-specialized-slot
cl inherited-sds slot-spec — sd
compute-specialized-slot-class
cl inherited-sds slot-spec
— sd-class
compute-instance-size
cl effective-sds — integer
compute-and-ensure-slot-accessors
cl effective-sds inherited-sds — (sd™)
compute-slot-reader
cl sd effective-sds — function
compute-slot-writer
cl sd effective-sds — function
ensure-slot-reader
cl sd effective-sds reader — function
compute-primitive-reader-using-slot
sd cl effective-sds — function
compute-primitive-reader-using-class
cl sd effective-sds — function
ensure-slot-writer
cl sd effective-sds writer — function
compute-primitive-writer-using-slot
sd cl effective-sds — function
compute-primitive-writer-using-class
cl sd effective-sds — function

Specialized Arguments
class <class>: A class.

Result

Computes and returns a function of one argument, which re-
turns t when applied to direct or indirect instances of class and
() otherwise.

17.10.4 compute-constructor generic function

Generic Arguments
class <class>: A class.

parameters <list>: The argument list of the func-
tion being created.

Programming Language EuLisp:2010(E)

Result
Computes and returns a constructor function for class.

17.10.5 compute-constructor <class> method

Specialized Arguments

class <class>: A class.

parameters <list>: The argument list of the func-
tion being created.

Result

Computes and returns a constructor function, which returns a
new instance of class.

17.10.6 allocate generic function

Generic Arguments

class <class>: A class.

ingtlist <list>: A list of initialization arguments.

Result
An instance of the first argument.

Remarks

Creates an instance of the first argument.
new methods for new metaclasses.

Users may define

17.10.7 allocate <class> method

Specialized Arguments
class <class>: A class.

ingtlist <list>: A list of initialization arguments.

Result
An instance of the first argument.

Remarks

The default method creates a new uninitialized instance of
the first argument. The initlist is not used by this allocate
method.

17.11 Slot Description Initialization

17.11.1 initialize <slot> method

Specialized Arguments

slot <slot>: A slot description.

indtlist <list>: A list of initialization options as fol-
lows:
name symbol: The name of the slot.

default-function function: A func-

tion.
keyword symbol: A symbol.

reader function: A slot reader func-
tion.

85

Programming Language EuLisp:2010(E)

writer function: A slot writer func-
tion.

Result
The initialized slot description.

17.12 Generic Function Initialization

17.12.1 initialize <generic-function> method

Specialized Arguments

gf <generic-function>: A generic function.

initlist <list>: A list of initialization options as fol-
lows:

name symbol: The name of the generic
function.

domain list: List of argument classes.

method-class class: Class of attached
methods.

method method-description: A method
to be attached. This option may
be specified more than once.

Result
The initialized generic function.

Remarks

This method initializes and returns the generic-function.
The specified methods are attached to the generic func-

tion by add-method, and its slots are initialized from
the information passed in initlist and from the re-
sults of calling compute-method-lookup-function and

compute-discriminating-function on the generic function.
Note that these two functions may not be called during the
call to initialize, and that they may be called several times
for the generic function.

The basic call structure is: add-method gf method -> gf

compute-method-lookup-function gf domain -> function
compute-discriminating-function gf domain lookup-fn
methods -> function

17.13 Method Initialization

17.13.1 initialize <method> method

Specialized Arguments
method <method>: A method.

initlist <list>: A list of initialization options as fol-
lows:

domain list: The list of

classes.

argument

function fn: A function, created with
method-function-lambda.

generic-function gf: A generic func-
tion.

86

Version 0.991

Result

This method returns the initialized method metaobject method.
If the generic-function option is supplied, add-method is called
to install the new method in the generic-function.

17.14 Inheritance Protocol

17.14.1 compatible-superclasses? generic function

Generic Arguments
class <class>: A class.

direct-superclasses <list>: A list of potential direct
superclasses of class.

Result

Returns t if class is compatible with direct-superclasses, other-
wise ().

17.14.2 compatible-superclasses? <class> method

Specialized Arguments
class <class>: A class.

direct-superclasses <list>: A list of potential direct
superclasses.

Result

Returns the result of calling compatible-superclass? on class
and the first element of the direct-superclasses (single inheri-
tance assumption).

17.14.3 compatible-superclass? generic function

Generic Arguments
subclass <class>: A class.

superclass <class>: A potential direct superclass.

Result
Returns t if subclass is compatible with superclass, otherwise

0.

17.14.4 compatible-superclass? <class> method

Specialized Arguments

subclass <class>: A class.

superclass <class>: A potential direct superclass.

Result

Returns t if the class of the first argument is a subclass of the
class of the second argument, otherwise ().

If the implementation wishes to restrict the instantiation tree
(see introduction to B.4), this method should return () if su-
perclass is <metaclass>.

17.14.5 compatible-superclass? <class> method

Version 0.991

Specialized Arguments

subclass <class>: A class.

superclass <abstract-class>: A potential direct su-
perclass.

Result
Always returns t.

17.14.6 <abstract-class>

method

compatible-superclass?

Specialized Arguments
subclass <abstract-class>: A class.

superclass <class>: A potential direct superclass.

Result
Always returns ().

17.14.7 <abstract-class>

method

compatible-superclass?

Specialized Arguments
subclass <abstract-class>: A class.

superclass <abstract-class>: A potential direct su-
perclass.

Result
Always returns t.

17.14.8 compute-class-precedence-list

generic function

Generic Arguments

class <class>: Class being defined.

direct-superclasses <list>: List of direct

classes.

super-

Result

Computes and returns a list of classes which represents the lin-
earized inheritance hierarchy of class and the given list of direct
superclasses, beginning with class and ending with <object>.

17.14.9 compute-class-precedence-list <list>
method
Specialized Arguments
class <class>: Class being defined.
direct-superclasses <list>: List of direct super-

classes.

Result
A list of classes.

Remarks

This method can be considered to return a cons of class and the
class precedence list of the first element of direct-superclasses

Programming Language EuLisp:2010(E)

(single inheritance assumption). If no direct-superclasses has
been supplied, the result is the list of two elements: class and
<object>.

17.14.10 compute-slots generic function

Generic Arguments
class <class>: Class being defined.

direct-slot-specifications <list>: A list of direct slot
specification.

inherited-slots <list>: A list of lists of inherited slot
descriptions.

Result

Computes and returns the list of effective slot descriptions of
class.

See also

compute-inherited-slots.

17.14.11 compute-slots <class> method

Specialized Arguments
class <class>: Class being defined.

slot-specs <list>: List of (direct) slot specifications.

inherited-slot-lists <list>: A list of lists (in fact one
list in single inheritance) of inherited slot descrip-
tions.

Result
A list of effective slot descriptions.

Remarks

The default method computes two sublists:

a) Calling compute-specialized-slot with the three argu-
ments (i) class, (i) each inherited-slot as a singleton list,
(iii) the slot-spec corresponding (by having the same name)
to the slot description, if it exists, otherwise (), giving a
list of the specialized slot descriptions.

b) Calling compute-defined-slot with the three arguments
(i) class, (ii) each slot-specification which does not have a
corresponding (by having the same name) inherited-slot.

The method returns the concatenation of these two lists as its
result. The order of elements in the list is significant. All
specialized slot descriptions have the same position as in the
effective slot descriptions list of the direct superclass (due to the
single inheritance). The slot accessors (computed later) may
rely on this assumption minimizing the number of methods to
one for all subclasses and minimizing the access time to an
indexed reference.

See also

compute-specialized-slot, compute-defined-slot,
compute-and-ensure-slot-accessors.

87

Programming Language EuLisp:2010(E)

17.14.12 compute-keywords generic function

Generic Arguments

class <class>: Class being defined.
keywords <list>: List of direct keywords.

inherited-keyword-lists <list>: A list of lists of in-
herited keywords.

Result
List of symbols.

Remarks

Computes and returns all legal keywords for class.

See also

compute-inherited-keywords.

17.14.13 compute-keywords <class> method

Specialized Arguments
class <class>: Class being defined.

keywords <list>: List of direct keywords.

inherited-keyword-lists <list>: A list of lists of in-
herited keywords.

Result
List of symbols.

Remarks

This method appends the second argument with the first
element of the third argument (single inheritance assump-
tion), removes duplicates and returns the result. Note that
compute-keywords is called by the default initialize method
with all direct keywords as the second argument: those speci-
fied as slot option and those specified as class option.

Version 0.991

Specialized Arguments

class <class>: Class being defined.

direct-superclasses <list>: List of direct

classes.

super-

Result
List of lists of inherited slot descriptions.

Remarks

The result of the default method is a list of one element: a list
of effective slot descriptions of the first element of the second
argument (single inheritance assumption). Its result is used by
compute-slots as an argument.

17.14.14 compute-inherited-slots generic function

Generic Arguments

class <class>: Class being defined.

direct-superclasses <list>: List of direct
classes.

super-
Result
List of lists of inherited slot descriptions.

Remarks

Computes and returns a list of lists of effective slot descriptions.

See also

compute-slots.

17.14.15 compute-inherited-slots <class> method

88

17.14.16 compute-inherited-keywords generic function

Generic Arguments
class <class>: Class being defined.

direct-superclasses <list>: List of direct
classes.

super-

Result
List of lists of symbols.

Remarks

Computes and returns a list of lists of keywords. Its result is
used by compute-keywords as an argument.

See also

compute-keywords.

17.14.17 compute-inherited-keywords <class> method

Specialized Arguments
class <class>: Class being defined.

direct-superclasses <list>: List of direct
classes.

super-

Result
List of lists of symbols.

Remarks

The result of the default method contains one list of legal key-
words of the first element of the second argument (single in-
heritance assumption).

17.14.18 compute-defined-slot generic function

Generic Arguments
class <class>: Class being defined.

slot-spec <list>: Canonicalized slot specification.

Result
Slot description.

Version 0.991

Remarks

Computes and returns a new effective slot description. It is
called by compute-slots on each slot specification which has
no corresponding inherited slot descriptions.

See also
compute-defined-slot-class.

17.14.19 compute-defined-slot <class> method

Specialized Arguments

class <class>: Class being defined.

slot-spec <1list>: Canonicalized slot specification.

Result
Slot description.

Remarks
Computes and returns a new effective slot descrip-
tion. The class of the result is determined by calling

compute-defined-slot-class.

See also
compute-defined-slot-class.

17.14.20 compute-defined-slot-class generic function

Generic Arguments

class <class>: Class being defined.

slot-spec <1list>: Canonicalized slot specification.

Result
Slot description class.

Remarks

Determines and returns the slot description class corresponding
to class and slot-spec .

See also

compute-defined-slot.

17.14.21 compute-defined-slot-class <class> method

Specialized Arguments
class <class>: Class being defined.

slot-spec <list>: Canonicalized slot specification.

Result
The class <local-slot>.

Remarks

This method just returns the class <local-slot>.

17.14.22 compute-specialized-slot generic function

Programming Language EuLisp:2010(E)

Generic Arguments

class <class>: Class being defined.

inherited-slots <list>: List of inherited slot descrip-
tions (each of the same name as the slot being
defined).

slot-spec <1list>: Canonicalized slot specification or

0.

Result
Slot description.

Remarks

Computes and returns a new effective slot description. It is
called by compute-slots on the class, each list of inherited slots
with the same name and with the specialising slot specification
list or () if no one is specified with the same name.

See also
compute-specialized-slot-class.

17.14.23 compute-specialized-slot <class> method

Specialized Arguments
class <class>: Class being defined.

inherited-slots <list>: List of inherited slot descrip-
tions.

slot-spec <1ist>: Canonicalized sdirect-lot specifica-
tion or ().

Result
Slot description.

Remarks
Computes and returns a new effective slot descrip-
tion. The class of the result is determined by calling

compute-specialized-slot-class.

See also

compute-specialized-slot-class.

17.14.24 compute-specialized-slot-class

generic function

Generic Arguments

class <class>: Class being defined.

inherited-slots <list>: List of inherited slot descrip-
tions.

slot-spec <1ist>: Canonicalized slot specification or

0.

Result
Slot description class.

Remarks

Determines and returns the slot description class corresponding
to (i) the class being defined, (ii) the inherited slot descriptions
being specialized (iii) the specializing information in slot-spec.

89

Programming Language EuLisp:2010(E)

See also

compute-specialized-slot.

Version 0.991

17.15.2 compute-and-ensure-slot-accessors <class>

method

17.14.25 compute-specialized-slot-class <class>

method

Specialized Arguments

class <class>: Class being defined.

inherited-slots <list>: List of inherited slot descrip-
tions.

slot-spec <1ist>: Canonicalized slot specification or

0.

Result
The class <local-slot>.

Remarks

This method just returns the class <local-slot>.
17.15 Slot Access Protocol

The slot access protocol is defined via accessors (readers and
writers) only. There is no primitive like CLOS’s slot-value.
The accessors are generic for standard classes, since they have
to work on subclasses and should do the applicability check
anyway. The key idea is that the discrimination on slots and
classes is performed once at class definition time rather than
again and again at slot access time.

Each slot has exactly one reader and one writer as anonymous
objects. If a reader/writer slot-option is specified in a class def-
inition, the anonymous reader/writer of that slot is bound to
the specified identifier. Thus, if a reader/writer option is spec-
ified more than once, the same object is bound to all the iden-
tifiers. If the accessor slot-option is specified the anonymous
writer will be installed as the setter of the reader. Specialized
slots refer to the same objects as those in the superclasses (sin-
gle inheritance makes that possible). Since the readers/writers
are generic, it is possible for a subclass (at the meta-level)
to add new methods for inherited slots in order to make the
readers/writers applicable on instances of the subclass. A new
method might be necessary if the subclasses have a different
instance allocation or if the slot positions cannot be kept the
same as in the superclass (in multiple inheritance extensions).
This can be done during the initialization computations.

17.15.1

compute-and-ensure-slot-accessors
generic function

Specialized Arguments

class <class>: Class being defined.
slots <1list>: List of effective slot descriptions.

inherited-slots <1ist>: List of lists of inherited slot
descriptions.

Result
List of effective slot descriptions.

Remarks

For each slot description in slots the default method checks if
it is a new slot description and not an inherited one. If the slot
description is new,

a) calls compute-slot-reader to compute a new slot reader
and stores the result in the slot description;

b) calls compute-slot-writer to compute a new slot writer
and stores the result in the slot description;

Otherwise, it assumes that the inherited values remain valid.

Finally, for every slot description (new or inherited) it ensures
the reader and writer work correctly on instances of class by
means of ensure-slot-reader and ensure-slot-writer.

17.15.3 compute-slot-reader generic function

Generic Arguments

class <class>: Class.
slot <slot>: Slot description.

slot-list <list>: List of effective slot descriptions.

Result
Function.

Remarks

Computes and returns a new slot reader applicable to instances
of class returning the slot value corresponding to slot. The
third argument can be used in order to compute the logical
slot position.

Generic Arguments
class <class>: Class being defined.

slots <list>: List of effective slot descriptions.

inherited-slots <1ist>: List of lists of inherited slot
descriptions.

Result
List of effective slot descriptions.

Remarks

Computes new accessors or ensures that inherited accessors
work correctly for each effective slot description.

90

17.15.4 compute-slot-reader <class> method

Specialized Arguments

class <class>: Class.
slot <slot>: Slot description.

slots <list>: List of effective slot descriptions.

Result
Generic function.

Version 0.991

Remarks

The default method returns a new generic function of one ar-
gument without any methods. Its domain is class.

17.15.5 compute-slot-writer generic function

Generic Arguments

class <class>: Class.
slot <slot>: Slot description.

slots <list>: List of effective slot descriptions.

Result
Function.

Remarks

Computes and returns a new slot writer applicable to instances
of class and any value to be stored as the new slot value corre-
sponding to slot. The third argument can be used in order to
compute the logical slot position.

17.15.6 compute-slot-writer <class> method

Specialized Arguments

class <class>: Class.
slot <slot>: Slot description.

slots <1ist>: List of effective slot descriptions.

Result
Generic function.

Remarks

The default method returns a new generic function of two argu-
ments without any methods. Its domain is class X <object>.

17.15.7 ensure-slot-reader generic function

Generic Arguments

class <class>: Class.
slot <slot>: Slot description.
slots <1ist>: List of effective slot descriptions.

reader <function>: The slot reader.

Result
Function.

Remarks

Ensures function correctly fetches the value of the slot from
instances of class.

17.15.8 ensure-slot-reader <class> method

Specialized Arguments

class <class>: Class.

Programming Language EuLisp:2010(E)

slot <slot>: Slot description.
slots <list>: List of effective slot descriptions.

reader <generic-function>: The slot reader.

Result
Generic function.

Remarks

The default method checks if there is a method in the generic-
function. If not, it creates and adds a new one, otherwise it
assumes that the existing method works correctly. The domain
of the new method is class and the function is

(method-function-lambda ((object class))
(primitive-reader object))

compute-primitive-reader-using-slot is called by
ensure-slot-reader method to compute the primitive
reader used in the function of the new created reader method.

17.15.9 ensure-slot-writer generic function

Generic Arguments

class <class>: Class.
slot <slot>: Slot description.
slots <list>: List of effective slot descriptions.

writer <function>: The slot writer.

Result
Function.

Remarks

Ensures function correctly updates the value of the slot in in-
stances of class.

17.15.10 ensure-slot-writer <class> method

Specialized Arguments
class <class>: Class.

slot <slot>: Slot description.
slot-list <list>: List of effective slot descriptions.

writer <generic-function>: The slot writer.

Result
Generic function.

Remarks

The default method checks if there is a method in the generic-
function. 1If not, creates and adds a new one, otherwise it
assumes that the existing method works correctly. The domain
of the new method is class x <object> and the function is:

(method-function-lambda ((obj class)

(new-value <object>))
(primitive-writer obj new-value))

91

Programming Language EuLisp:2010(E)

compute-primitive-writer-using-slot is called by
ensure-slot-writer method to compute the primitive
writer used in the function of the new created writer method.

17.15.11 compute-primitive-reader-using-slot

generic function

Generic Arguments
slot <slot>: Slot description.

class <class>: Class.

slots <list>: List of effective slot descriptions.

Result
Function.

Remarks

Computes and returns a function which returns a slot value
when applied to an instance of class.

17.15.12 compute-primitive-reader-using-slot <slot>
method
Specialized Arguments
slot <slot>: Slot description.
class <class>: Class.
slots <list>: List of effective slot descriptions.
Result
Function.
Remarks
Calls compute-primitive-reader-using-class. This is the

default method.

17.15.13 compute-primitive-reader-using-class

generic function

Generic Arguments
class <class>: Class.

slot <slot>: Slot description.

slots <list>: List of effective slot descriptions.

Result
Function.

Remarks

Computes and returns a function which returns the slot value
when applied to an instance of class.

17.15.14 compute-primitive-reader-using-class <class>

method

Specialized Arguments
class <class>: Class.

92

Version 0.991
slot <slot>: Slot description.
slots <list>: List of effective slot descriptions.

Result
Function.

Remarks
The default method returns a function of one argument.

17.15.15 compute-primitive-writer-using-slot

generic function

Generic Arguments
slot <slot>: Slot description.

class <class>: Class.

slots <list>: List of effective slot descriptions.

Result
Function.

Remarks

Computes and returns a function which stores a new slot value
when applied on an instance of class and a new value.

17.15.16 compute-primitive-writer-using-slot <slot>
method
Specialized Arguments
slot <slot>: Slot description.
class <class>: Class.
slots <1ist>: List of effective slot descriptions.
Result
Function.
Remarks
Calls compute-primitive-writer-using-class. This is the

default method.

17.15.17 compute-primitive-writer-using-class

generic function

Generic Arguments
class <class>: Class.

slot <slot>: Slot description.

slots <list>: List of effective slot descriptions.

Result
Function.

Remarks

Computes and returns a function which stores the new slot
value when applied on an instance of class and new value.

Version 0.991

17.15.18 compute-primitive-reader-using-class <class>

method

Specialized Arguments

class <class>: Class.
slot <slot>: Slot description.

slots <1list>: List of effective slot descriptions.

Result
Function.

Remarks

The default method returns a function of two arguments.

17.16 Method Lookup and Generic Dispatch

17.16.1 compute-method-lookup-function

generic function

Generic Arguments
gf <generic-function>: A generic function.

domain <list>: A list of classes which cover the do-
main.

Result
A function.

Remarks

Computes and returns a function which will be called at least
once for each domain to select and sort the applicable meth-
ods by the default dispatch mechanism. New methods may be
defined for this function to implement different method lookup
strategies. Although only one method lookup function generat-
ing method is provided by the system, each generic function has
its own specific lookup function which may vary from generic
function to generic function.

Programming Language EuLisp:2010(E)

Generic Arguments

gf <generic-function>: A generic function.

domain <list>: A list of classes which span the do-
main.

lookup-fn <function>: The method lookup function.

methods <list>: A list of methods attached to the
generic-function.

Result
A function.

Remarks

This generic function computes and returns a function which
is called whenever the generic function is called. The returned
function controls the generic dispatch. Users may define meth-
ods on this function for new generic function classes to imple-
ment non-default dispatch strategies.

17.16.4 compute-discriminating-function <generic-function>

method

Specialized Arguments

gf <generic-function>: A generic function.

domain <list>: A list of classes which span the do-
main.

lookup-fn <function>: The method lookup function.

methods <list>: A list of methods attached to the
generic-function.

Result
A function.

Remarks

This method computes and returns a function which is called
whenever the generic function is called. This default method
implements the standard dispatch strategy: The generic func-

17.16.2 compute-method-lookup-function <generic—functig}951’s methods are sorted using the function returned by

method

Specialized Arguments

gf <generic-function>: A generic function.

domain <list>: A list of classes which cover the do-
main.

Result
A function.

Remarks

Computes and returns a function which will be called at least
once for each domain to select and sort the applicable methods
by the default dispatch mechanism. It is not defined, whether
each generic function may have its own lookup function.

17.16.3

compute-discriminating-function
generic function

compute-method-lookup-function, and the first is called as
if by call-method, passing the others as the list of next meth-
ods. Note that call-method need not be directly called.

17.16.5 add-method generic function

Generic Arguments
gf <generic-function>: A generic function.

method <method>: A method to be attached to the
generic function.

Result

This generic function adds method to the generic function gf.
This method will then be taken into account when gf is called
with appropriate arguments. It returns the generic function gf.
New methods may be defined on this generic function for new
generic function and method classes.

93

Programming Language EuLisp:2010(E)

Remarks

In contrast to CLOS, add-method does not remove a method
with the same domain as the method being added. Instead, a
noncontinuable error is signalled.

17.16.6 add-method <generic-function> method

Specialized Arguments

gf <generic-function>: A generic function.

method <method>: A method to be attached.

Result
The generic function.

Remarks

This method checks that the domain classes of the method are
subclasses of those of the generic function, and that the method
is an instance of the generic function’s method class. If not,
signals an error (condition: <incompatible-method-and-gf>
). It also checks if there is a method with the same domain
already attached to the generic function. If so, a noncontinu-
able error is signaled (condition: <method-domain-clash>).
If no error occurs, the method is added to the generic func-
tion. Depending on particular optimizations of the generic
dispatch, adding a method may cause some updating compu-
tations, e.g. by calling compute-method-lookup-function and
compute-discriminating-function.

94

Version 0.991

17.17 Low Level Allocation Primitives

This module provides primitives which are necessary to im-
plement new allocation methods portably. However, they
should be defined in such a way that objects cannot be de-
stroyed unintentionally. In consequence it is an error to use
primitive-class-of, primitive-ref and their setters on ob-
jects not created by primitive-allocate.

17.17.1 primitive-allocate function

Arguments

class: A class.

size: An integer.

Result
An instance of the first argument.

Remarks

This function returns a new instance of the first argument
which has a vector-like structure of length size. The compo-
nents of the new instance can be accessed using primitive-ref
and updated using primitive-ref. It is intended to be used
in new allocate methods defined for new metaclasses.

17.17.2 primitive-class-of function

Arguments

object: An object created by primitive-allocate.

Result
A class.

Remarks

This function returns the class of an object. It is similar to
class-of, which has a defined behaviour on any object. It is
an error to use primitive-class-of on objects which were not
created by primitive-allocate.

17.17.3 (setter primitive-class-of) setter

Arguments
object: An object created by primitive-allocate.

class: A class.

Result
The class.

Remarks

This function supports portable implementations of

a) dynamic classification like change-class in CLOS.

b) automatic instance updating of redefined classes.

17.17.4 primitive-ref function

Version 0.991

Arguments

object: An object created by primitive-allocate.

indez: The index of a component.

Result
An object.

Remarks

Returns the value of the objects component corresponding to
the supplied index. It is an error if indez is outside the index
range of object. This function is intended to be used when
defining new kinds of accessors for new metaclasses.

17.17.5 (setter primitive-ref) setter

Arguments

object: An object created by primitive-allocate.
indez: The index of a component.

value: The new value, which can be any object.

Result
The new value.

Remarks

Stores and returns the new value as the objects component
corresponding to the supplied index. It is an error if indez is
outside the index range of object. This function is intended to
be used when defining new kinds of accessors for new meta-
classes.

Programming Language EuLisp:2010(E)

17.18 Dynamic Binding

The name of this module is dynamic.

17.18.1 dynamic special operator

17.18.1.1 Syntax

dynamic-form: — <object>
(dynamic identifier)

Arguments

identifier: A symbol naming a dynamic binding.

Result

The value of closest dynamic binding of identifier is returned.
If no visible binding exists, an error is signaled (condition:
<unbound-dynamic-variable>).

17.18.2 dynamic-setq special operator

17.18.2.1 Syntax

dynamic-setq-form: — <object>
(dynamic-setq identifier form)

Arguments

identifier: A symbol naming a dynamic binding to be
updated.

form: An expression whose value will be stored in the
dynamic binding of identifier.

Result
The value of form.

Remarks

The form is evaluated and the result is stored in the closest
dynamic binding of identifier. If no visible binding exists, an
error is signalled (condition: <unbound-dynamic-variable>).

17.18.3 <unbound-dynamic-variable>

<general-condition> condition

Initialization Options

symbol symbol: A symbol naming the (unbound) dy-
namic variable.

Remarks
Signalled by dynamic or dynamic-setq if the given dynamic
variable has no visible dynamic binding.

17.18.4 dynamic-let special operator

17.18.4.1 Syntax

dynamic-let-form: — <object>
(dynamic-let binding”
body)

95

Programming Language EuLisp:2010(E)

Arguments

binding™ : A list of binding specifiers.

body: A sequence of forms.

Result

The sequence of forms is evaluated in order, returning the value
of the last one as the result of the dynamic-let form.

Remarks

A binding specifier is either an identifier or a two element list of
an identifier and an initializing form. All the initializing forms
are evaluated from left to right in the current environment and
the new bindings for the symbols named by the identifiers are
created in the dynamic environment to hold the results. These
bindings have dynamic scope and dynamic extent . Each form
in body is evaluated in order in the environment extended by
the above bindings. The result of evaluating the last form in
body is returned as the result of dynamic-let.

17.18.5 defglobal defining operator

17.18.5.1

defglobal-form: — <object>
(defglobal identifier level-1-form)

Syntax

Arguments
identifier: A symbol naming a top dynamic binding
containing the value of form.

form: The form whose value will be stored in the top
dynamic binding of identifier.

Remarks

The value of form is stored as the top dynamic value of
the symbol named by identifier . The binding created
by defglobal is mutable. An error is signaled (condition:
<dynamic-multiply-defined>), on processing this form more
than once for the same identifier.

NOTE 1 The problems engendered by cross-module reference ne-
cessitated by a single top-dynamic environment are leading to a re-
consideration of the defined model. Another unpleasant aspect of
the current model is that it is not clear how to address the issue
of importing (or hiding) dynamic variables—they are in every sense
global, which conflicts with the principle of module abstraction. A
model, in which a separate top-dynamic environment is associated
with each module is under consideration for a later version of the
definition.

17.18.6 <dynamic-multiply-defined>

<general-condition> condition

Initialization Options

symbol symbol: A symbol naming the dynamic vari-
able which has already been defined.

Remarks

Signalled by defglobal if the named dynamic variable already
exists.

96

Version 0.991

17.19 Exit Extensions

The name of this module is exit-1.

17.19.1 catch special operator

17.19.1.1 Syntax

catch-form: — <object>
(catch tag body)
tag:
symbol

Remarks

The catch operator is similar to block, except that the scope
of the name (tag) of the exit function is dynamic. The catch tag
must be a symbol because it is used as a dynamic variable to
create a dynamically scoped binding of fag to the continuation
of the catch form. The continuation can be invoked anywhere
within the dynamic extent of the catch form by using throw.
The forms are evaluated in sequence and the value of the last
one is returned as the value of the catch form.

17.19.1.2

Rewrite Rules

Is an error
(progn tag ()
(let/cc tmp
(dynamic-let ((tag tmp))
body))

(catch) =
(catch tag) =
(catch tag body) =

Exiting from a catch, by whatever means, causes the restora-
tion of the lexical environment and dynamic environment that
existed before the catch was entered. The above rewrite for
catch, causes the variable tmp to be shadowed. This is an arti-
fact of the above presentation only and a conforming processor
must not shadow any variables that could occur in the body of
catch in this way.

See also

throw.

17.19.2 throw special operator
17.19.2.1 Syntax

throw-form: — <object>
(throw tag body)

Remarks

In throw, the ftag names the continuation of the catch from
which to return. throw is the invocation of the continuation of
the catch named tag. The body is evaluated and the value are
returned as the value of the catch named by tag. The tag is a
symbol because it used to access the current dynamic binding
of the symbol, which is where the continuation is bound.

17.19.2.2

Rewrite Rules

Is an error

((dynamic tag) ())
((dynamic tag) form)

(throw)
(throw tag)
(throw tag form)

See also

catch.

Version 0.991

17.20 Syntax of Level-1 objects

This section gives the syntax of all level-1 forms:

Any productions undefined here appear elsewhere in the defi-
nition, specifically: the syntax of most expressions and defini-
tions is given in the section defining level-0.

17.20.1 Syntax of Level-1 modules

defmodule-1-form:

(defmodule module-name
module-directives
level-1-module-form™)

level-1-module-form:
level-0-module-form
level-1-form
defining-1-form
level-1-form:

level-0-form

special-1-form

form:

level-1-form

special-form:

special-1-form

defining-1-form:

defclass-1-form

defgeneric-1-form

defglobal-form
special-1-form:

generic-lambda-form

method-lambda-form
defmethod-form
method-function-lambda-form
catch-form

throw-form

17.20.2 Syntax of Level-1 defining forms

defclass-1-form:

(defclass class-name superclass-names
(slot-1")
class-option-1")

superclass-names:

O

superclass-name

(superclass-name*)

slot-1:

slot

(slot-name slot-option-1*)

slot-option-1:

slot-option

identifier level-1-form

class-option-1

class-option

class: class-name

identifier level-1-form

defgeneric-1-form:

(defgeneric gf-name gf-lambda-list
level-1-init-option)

defmethod-1-form:

(defmethod gf-locator
method-init-option*
specialized-lambda-list
body)

defglobal-form: — <object>
(defglobal identifier level-1-form)

Programming Language EuLisp:2010(E)

17.20.3 Syntax of Level-1 special forms

dynamic-form: — <object>
(dynamic identifier)
dynamic-setq-form: — <object>
(dynamic-setq identifier form)
dynamic-let-form: — <object>
(dynamic-let binding”
body)
generic-lambda-form:
(generic-lambda gf-lambda-list
level-1-init-option™)
level-1-init-option:
class class-name
method-class class-name
method level-1-method-description
identifier level-1-form
level-0-init-option
level-1-method-description:
(method-init-option™
specialized-lambda-list
body)
method-init-option:
class class-name
identifier level-1-form
method-lambda-form: — <function>
(method-lambda
method-init-option™
specialized-lambda-list
body)
catch-form: — <object>
(catch tag body)
tag:
symbol
throw-form: — <object>
(throw tag body)

97

Programming Language EuLisp:2010(E)

Bibliography

[1] Alberga, C.N., Bosman-Clark, C., Mikelsons, M., Van
Deusen, M., & Padget, J.A., Ezperience with an Uncommon
LISP, Proceedings of 1986 ACM Symposium on LISP and
Functional Programming, ACM, New York, 1986 (also avail-
able as IBM Research Report RC-11888).

[2] Berrington N., Deroure D. & Padget J.A., Guaranteeing
Unpredictability, in preparation.

[3] Bobrow D.G., DiMichiel L.G., Gabriel R.P., Keene S.E,
Kiczales G. & Moon D.A, Common Lisp Object System Speci-
fication, SIGPLAN Notices, Vol. 23, September 1988.

[4] Chailloux J., Devin M. & Hullot J-M., LELISP: A Portable
and Efficient Lisp System, Proceedings of 1984 ACM Sym-
posium on Lisp and Functional Programming, Austin, Texas,
pp113-122; published by ACM Press, New York.

[5] Chailloux J., Devin M., Dupont F., Hullot J-M., Serpette
B., & Vuillemin J., Le-Lisp de I’INRIA, Version 15.2, Manuel
de référence, INRIA, Rocquencourt, May 1987.

[6] Clinger W. & Rees J.A. (eds.), The Revised® Report on
Scheme, SIGPLAN Notices, Vol. 21, No. 12, 1986.

[7] Cointe P., Metaclasses are First Class: the ObjVlisp model,
Proceedings of OOPSLA ’87, published as SIGPLAN Notices,
Vol 22, No 12 pp156-167.

[8] Fitch J.P. & Norman A.C., Implementing Lisp in a High-
Level Language, Software Practice and Experience, Vol 7,
pp713-725.

[9] Friedman D. & Haynes C., Constraining Control, Proceed-
ings of 11th Annual ACM Symposium on Principles of Pro-
gramming Languages, pp245-254, published by ACM Press,
New York, 1985.

[10] Hudak P. & Wadler P., (eds.) Report on the Functional
Programming Language Haskell, Yale University, Department
of Computer Science, Research Report YALEU/DCS/RR-666,
December 1988.

[11] Landin P.J., The Next 700 Programming Languages, Com-
munications of the ACM, Vol 9, No 3., 1966, pp156-166.

[12] Lang K.J. & Pearlmutter B.A., Oaklisp: An Object-
Oriented Dialect of Scheme, Lisp and Symbolic Computation,
Vol. 1, No. 1, June 1988, pp39-51, published by Kluwer Aca-
demic Publishers, Boston.

[13] MacQueen D., et al, Modules for Standard ML, Pro-
ceedings of 1984 ACM Symposium on Lisp and Functional
Programming, Austin, Texas, ppl198-207, published by ACM
Press, New York.

[14] Milner R., et al, Standard ML, Laboratory for the Founda-
tions of Computer Science, University of Edinburgh, Technical
Report.

[15] Padget J.A., et al, Desiderata for the Standardisation of
Lisp, Proceedings of 1986 ACM Conference on Lisp and Func-
tional Programming, pp54-66, published by ACM Press, New
York, 1986.

[16] Pitman K.M., An Error System for Common Lisp, ISO
WG16 paper N24.

[17] Rees J.A., The T Manual, Yale University Technical Re-
port, 1986.

98

Version 0.991

[18] Slade S., The T Programming Language, a Dialect of Lisp,
Prentice-Hall 1987.

[19] Shalit A., Dylan, an object-oriented dynamic language,
Apple Computer Inc., 1992.

[20] Steele G.L. Jr., Common Lisp the Language, Digital Press,
1984.

[21] Steele G.L. Jr., Common Lisp the Language (second edi-
tion), Digital Press, 1990.

[22] Stoyan H. et al, Towards a Lisp Standard, published in
the Proceedings of the 1986 European Conference on Artificial
Intelligence.

[23] Teitelman W., The Interlisp Reference Manual, Xerox
Palo Alto Research Center, 1978.

[24] Bretthauer, H. and Kopp, J., The Meta-Class-System
MCS. A Portable Object System for Common Lisp. -
Documentation-. Arbeitspapiere der GMD 554, Gesellschaft
fur Mathematik und Datenverarbeitung (GMD), Sankt Au-
gustin (July 1991).

Version 0.991

Module Index

character (level-0) 38
collection (level-0)ot 40
compare (level-0) 46
condition (level-0)ioll30
convert (level-0) i 48
copy (level-0) ... 49
double-float (level-0)50
dynamic (level-1) i 95
exit-1 (level-1) i 96
float (level-0) oot 51
formatted-io (level-0)l 52
fpi (level-0) ... 54
integer (level-0) 55
keyword (level-0) 56
list (level-0) ..ot 08
lock (level-0)t a..38
mathlib (level-0)o i 60
number (level-0) i 62
stream (level-0) 65
string (level-0) i 72
symbol (level-0) ...t 74
table (level-0) 75
telosO (level-0) ...o.ininiii 15
thread (level-0)36
vector (level-0) ...t 76

Programming Language EuLisp:2010(E)

99

Programming Language EuLisp:2010(E)

Class Index

<a-class> (undefined-module)oo 6
<buffered-stream> (Stream)c.ooeeeininnn. 65
<character> (character)c.oooiiiiiiii. 39
<character-sequence> (collection) 40
<class> (telos0)oooiiiiiiii i 15
<collection> (collection)cooiiiiiiiiiiin... 40
<condition> (condition) 32
<cons> (LISh) v vovinin i 58
<double-float> (double-float) 50
<file-stream> (Stream)coeiiiiiiiiiiiininin. 65
<fixed-buffered-stream> (stream) 65
<float> (float)oovrieii 51
<Epi> (IPI) oo 54
<function> (telos0)oiiiiiiiiiiii, 17
<function-class> (level-1)t 82
<generic-function> (telos0) 17
<hash-table> (table) 75
<integer> (INBEGET)onininiienii e 55
<keyword> (keyword) 56
<LAst> (LISE) vveren et 58
<local-slot> (level-1) ..., 82
<lock> (1ock) ©veieiei 38
<metaclass> (level-1) ... 82
<method> (level-1) ...ttt 84
<name> (£eloS0) ...ttt 20
<null> (BSE) ovoeee et 58
<number> (MUMDbEr) ... 62
<object> (telos0)ot 15
<sequence> (collection)cooiiiiiiiiiiiiiiiiia.. 40
<simple-class> (level-1) ...t 82
<simple-function> (telos0) 17
<simple-generic-function> (telos0) 17
<simple-method> (level-1)c.oiiiiiiiiia... 84
<simple-thread> (lock)cociiiiiiiiiiiiiinn. 38
<slot> (level-1) ..o 82
<stream> (STream)c.oeininiinininininnnnan.. 65
<string> (character) 39
<string> (string)o il 72
<string-stream> (stream)c.coiiiiiiiia... 65
<symbol> (Symbol)iiiiiii 74
<table> (table)t 75
<thread> (thread)cooiiiiiiiiiiiii.. 36
<VeCtOr> (VECTOT) vttt 76

100

Version 0.991

Version 0.991

Special Forms Index

P (level-0) ..o 21
O (HSE) oo 58
, (Symtax-0) ..o 28
C(syntax-0) ... 28
a-special-form (undefined-module) 5
and (level-0) 25
block (level-0)ooiiiuii 25
call-next-handler (condition)coo.....34
call-next-method (telos0)cooooin. 19
catch (exit-1) ... 96
character (character) i 38
cond (level-0) ..o 24
constant (level-0) ...l 21
defclass (level-1) i 78
defclass (telos0)o.viuiiiiiiii i 16
defcondition (condition)o 31
defconstant (level-0) ... 21
defgeneric (level-1), 79
defgeneric (telos0) ... 17
defglobal (dynamic)c.oouiriiuiniininannan... 96
deflocal (level-0)o 21
defmethod (level-1) i 80
defmethod (telos0)iiiiiiiiiiiii 18
defmodule () ...ttt e 11
defsyntax (level-0) i 22
defun (level-0)o i 22
dynamic (dynamic)oiiiiiiiiiiiii 95
dynamic-let (dynamic)oiiiiiii. 95
dynamic-setq (dynamic)oiiiiiiiiiiiian 95
float (float)oo i 51
function call (level-0) ...ttt 22
generic-lambda (level-1)l 79
generic-lambda (telos0)ooiiiiiiiiiiiiiiia.. 18
if (level-0) .o 24
integer (Integer)ooiuiniiiiiiiii i 55
keyword (keyword)l 56
lambda (level-0)ooiiiii 21
let (level-0) ..o 26
let* (level-0) . ..o 27
let/cc (level-0) i 25
letfuns (level-0) i 26
method-function-lambda (level-1) 80
method-lambda (level-1) ..., 80
next-method? (telos0) ..., 19
or (level-0)o 25
pair (List) ..o 58
progn (level-0) i 27
quasiquote (syntax-0) ..., 27
quote (level-0) i 21
return-from (level-0) il 26
setq (level-0) 23
string (String)oiuiiiii 72
symbol (level-0) i 21
symbol (symbol) 74
throw (exit-1)o.iiiii 96
unless (level-0) i 24
unquote (syntax-0) i 28
unquote-splicing (syntax-0)l 28
unwind-protect (level-0)l 27
VeCtor (VECLOT)iuuinii it 76
when (level-0) 24
with-handler (condition)coooiiiiiiia., 34
with-input-file (stream), 71
with-output-file (stream)o.oo... 71
with-sink (stream)o, 71
with-source (stream)l 71

Programming Language EuLisp:2010(E)

101

Programming Language EuLisp:2010(E)

Function Index

* (MUIMDET) .o 62
+(number) ... 62
= (MUMDET) . 62
/ (Umber) ... 62
< (COMPATE) . vttt 47
<= (COMPATE) .ttt ettt 47
= (COMPATE) ettt ettt e 47
> (COMPATE) .ttt ettt e 47
>= (COMPATE) .ottt ettt 47
% (mumber) ... 63
a-function (undefined-module) 5
abs (mumber) ... 63
abstract-class? (telos0)cooiiiiiiiiia., 17
allocate (telos0)ooiiiiiiiiiiiiii 19
apply (level-0) ... 23
apply-method (level-1) 81
atom? (liSt)oeinii 59
call-method (level-1)ooiiiiiiiiiiiiiiia... 80
car (List) «..oonini 59
cdr (LISt) oot 59
cerror (condition)iiiiiiiiiiiiiiiii., 35
character? (character)ooiiiiiiiiiiii. 39
class-keywords (level-1) 82
class-name (level-1)l 82
class-of (level-1) i 81
class-precedence-list (level-1) 82
class-slots (level-1) 82
clear-table (table) 75
condition? (condition)o.iiiil32
connect (stream) ool 66
cons (list)ooiui 59
cons? (List) ...oviuini 59
convert (COMVEIL)oueuiuiuarononananananenennn. 43
converter (CONVErt)oueuvuniiuiuniuanninann. 48
current-thread (thread)306
double-float? (double-float) 50
€q (COMPATIe) ...ttt 46
eql (COMPATE)iuiiiiiiii i 46
error (condition)ooel030
file-stream-buffer-position (stream) 65
file-stream-filename (stream)c....... 65
file-stream-mode (Stream)ooiiiiiian. 65
file-stream? (Stream)ccooiiiiiiiiiiiii... 65
float? (float) 51
flush (stream) ... 71
fmt (formatted-io) i 53
format (formatted-io) il 53
from-stream (Stream)iiiiiiiiiiiiiiiaia.. 65
ged (MUmMber) ... 63
generic-function-discriminating-function (level-1) ...83
generic-function-domain (level-1) 83
generic-function-method-class (level-1) 83
generic-function-method-lookup-function (level-1)83
generic-function-methods (level-1) 83
gensym (symbol) ... 74
Int? (fP1) . oniei 54
integer? (INteger)coiiiiiiiiiiiiiiiinnin... 55
keyword-exists? (keyword) ool 57
keyword-name (keyword)l 56
keyword? (keyword) 56
lem (MUMDEr) .o 63
Tist (LSt) oot 59
Tock (1OCK) ©ovinii 38
Tock? (10CK) «.ovini i 38
make (teloS0)ouiiiti 19
Max (COMIPATE) ..ttt ettt ettt 47
method-domain (level-1), 84
method-function (level-1) i, 84

102

Version 0.991

method-generic-function (level-1) 84
min (COMPATE)ttt 47
mod (MUIMDET)o 63
negative? (number) il 63
null? (list) ..o 58
number? (number) ... 62
0dd? (INBEEET)iuitii i 56
open-input-file (stream), 71
open-output-file (stream)cooiiiiii.... 71
positive? (number)l 63
primitive-allocate (level-1) 94
primitive-class-of (level-1) 94
primitive-ref (level-1)o L. 94
prin-char (stream)ooiiiiiiiiiiaia. 71
print (stream) ... 70
read (SETEAM)iiiiuiniiiii it 68
read-line (Stream)iiiiiiiiiiiiiiiia... 70
scan (formatted-io) oo 52
setter (level-0)o 23
(setter car) (list)cooiiuieiiiiiiiiia... 59
(setter cdr) (list)cooviiiiii 59
(setter converter) (convert) 48
(setter element) (collection)oovuiuenn. 42
(setter method-function) (level-1) 84
(setter primitive-class-of) (level-1) 94
(setter primitive-ref) (level-1) 95
sflush (Stream)ooiiiiiiiiiiniiiiiiiiaan., 70
sformat (formatted-io) il 52
signal (condition) 33
signum (number)o 63
slot-default-function (level-1) 83
slot-name (level-1) i 82
slot-slot-reader (level-1)t 83
slot-slot-writer (level-1), 83
sprin-char (stream)oiiiiiiiiiiiiiiiin.n. 71
sprint (stream) il 70
sTead (Stream)eveiiiinineiiii e 71
stream-buffer (stream)c.oiiiiiL. 65
stream-buffer-size (stream) 65
stream-lock (stream)oiiiiiiiiiiii. 65
stream-sink (stream)c.c.ciiiiiiiiiiiiiiin 65
stream-source (stream)ol 65
stream? (Stream)oiiiiiiiiiiiiiii. 65
string-stream? (stream)oiiiiii.. 65
string? (String)c.ouiniiiii 72
swrite (Stream)iiiiiiiiiiiii 69
symbol-exists? (symbol) ...t 74
symbol-name (Symbol)o 74
symbol? (Ssymbol) ... 74
table? (table) ... 75
thread-reschedule (thread) 36
thread-start (thread) 36
thread-value (thread) 37
thread? (thread) i 36
to-stream (Stream)coiiiiiiiiiiiii.. 65
unlock (lock) ... 38
Vector? (VECTOr)ieeiuiiiii i, 76
write (stream)i.iiiiiiiiii 70

Version 0.991

Generic Function Index

A=GeNETIC ... 5
defgeneric (undefined-module) 5
defmethod class-a (undefined-module) 6

accumulate ... 40
defgeneric (collection)c.ooiiiiii. 40

accumulatel ... 41
defgeneric (collection)cooiiiiii. 41

BCOS ittt 60
defgeneric (mathlib)o 60

add-method 93
defgeneric (level-1) 93
defmethod generic-function (level-1) 94

= 41
defgeneric (collection)cooiiiiiiii. 41

allocate 85
defgeneric (level-1) 85
defmethod class (level-1) 85

AN Y T L 41
defgeneric (collection)ooiiiiiiii.. 41

aS—1OWeICaseiviiiiiiiiiiiieiiiiiiiiiiieeee... .39
defgeneric (character)39
defmethod character (character)39
defmethod string (string) 73

ASTUPPETCASE ..ttt ittt e ittt e it 40
defgeneric (character)o, 40
defmethod character (character) 40
defmethod string (string) 73

ASAI 60
defgeneric (mathlib) 60

ALAN .. 60
defgeneric (mathlib) 60

atan2 ... 60
defgeneric (mathlib) 60

binary* ... 64
defgeneric (number) 64

binary+o 63
defgeneric (number) ool 63

binary= 64
defgeneric (number)ol 64

binary-gcd 64
defgeneric (number), 64

binary-1cm ... 64
defgeneric (number) i, 64

binary-mod 64
defgeneric (number) ..., 64

DINary/ .. 64
defgeneric (number), 64

DINary< ..o 47
defgeneric (COMPAIE)ooveiuvunununnanannn.. 47
defmethod character (character) 39
defmethod string (string) 73

DANaT Y= .. 46
defgeneric (COMPAIE)ovvuiuiunununnanannn.. 46
defmethod character (character) 39
defmethod cons (list) 09
defmethod number (number) 63
defmethod object (compare) 46
defmethod string (string) 72
defmethod vector (vector) 76

DINATYA o 64
defgeneric (number) ..., 64

celling ... 51
defgeneric (float) i 51

€0llection? ... 41
defgeneric (collection)cooiiiiiii.. 41

compatible-superclass?iiiiiiiiiiiii... 86
defgeneric (level-1)t 86
defmethod abstract-class (level-1) 87

Programming Language EuLisp:2010(E)

defmethod class (level-1)oooo.... 86
compatible-superclasses?oiiiiiiia.. 86
defgeneric (level-1) ..., 86
defmethod class (level-1) 86
compute-and-ensure-slot-accessors 90
defgeneric (level-1), 90
defmethod class (level-1) 90
compute-class—-precedence-list 87
defgeneric (level-1), 87
defmethod list (level-1), 87
compute-constructor oo, 85
defgeneric (level-1) ..., 85
defmethod class (level-1) 85
compute-defined-slot il 88
defgeneric (level-1), 88
defmethod class (level-1) 89
compute-defined-slot-class 89
defgeneric (level-1) i, 89
defmethod class (level-1) 89
compute-discriminating-function 93
defgeneric (level-1) i, 93
defmethod generic-function (level-1) 93
compute-inherited-keywords 88
defgeneric (level-1)o i, 88
defmethod class (level-1) 88
compute-inherited-slots 88
defgeneric (level-1) 88
defmethod class (level-1) 88
compute-keywords il 88
defgeneric (level-1) 88
defmethod class (level-1) 88
compute-method-lookup-function 93
defgeneric (level-1) 93
defmethod generic-function (level-1) 93
compute-predicate il 84
defgeneric (level-1) 84
defmethod class (level-1) 84
compute-primitive-reader-using-class 92
defgeneric (level-1) 92
defmethod class (level-1) 92, 93
compute-primitive-reader-using-slot 92
defgeneric (level-1)o i, 92
defmethod slot (level-1)c.oi... 92
compute-primitive-writer-using-class 92
defgeneric (level-1) i, 92
compute-primitive-writer-using-slot 92
defgeneric (level-1)o i, 92
defmethod slot (level-1)c.ooi... 92
compute-slot-reader i 90
defgeneric (level-1)o i, 90
defmethod class (level-1) 90
compute-slot-writer o il 91
defgeneric (level-1)o i, 91
defmethod class (level-1) 91
ComPUEE—SL1OtS ...ttt 87
defgeneric (level-1)o i, 87
defmethod class (level-1)o.... 87
compute-specialized-slotol 89
defgeneric (level-1), 89
defmethod class (level-1) 89
compute-specialized-slot-class 89
defgeneric (level-1) i, 89
defmethod class (level-1)o.... 90
concatenate ...l 41
defgeneric (collection)c.ooiiiiii.. 41
o7 T 61
defgeneric (mathlib) 61
COSh Lo 61

Programming Language EuLisp:2010(E)

defgeneric (mathlib) 61
AEEPTCOPY « vttt ettt e 49
defgeneric (COPY) vnvnvrmrieinit e, 49
defmethod class (COPY) . vvevnrrernininnnnenannennnn. 49
defmethod cons (list)l 59
defmethod object (COPY) ...nvuiviiuariiinaiann. 49
defmethod string (string) 73
defmethod vector (vector) 76
delete ... 42
defgeneric (collection) L. 42
disconnect i 67
defgeneric (stream)l 67
defmethod file-stream (stream) 67
defmethod stream (stream) 67
Ao L 42
defgeneric (collection), 42
element ... 42
defgeneric (collection)ocovuiiiiiiina. 42
BIIPE Y T et 42
defgeneric (collection)c.ooiiiiii. 42
end-of-stream i 68
defgeneric (stream)l 68
defmethod buffered-stream (stream) 68
defmethod file-stream (stream) 68
ensure-slot-reader 91
defgeneric (level-1), 91
defmethod class (level-1) 91
ensure-slot-writerl 91
defgeneric (level-1)t 91
defmethod class (level-1) 91
L= ¢ e 55
defgeneric (integer)coiiiiiiiiia... 55
1= o J 61
defgeneric (mathlib) 61
6 0 PP 42
defgeneric (collection)ooiL. 42
fill-buffer 67
defgeneric (stream)l 67
defmethod buffered-stream (stream) 67
defmethod file-stream (stream) 67
find-key 43
defgeneric (collection)L. 43
first ... 43
defgeneric (collection)oviiiiinina.. 43
£100T .. 52
defgeneric (float) il 52
flush-buffer 67
defgeneric (stream)ooiiiail... 67
defmethod buffered-stream (stream) 68
defmethod file-stream (stream) 68
generic-connect il 66
defgeneric (stream)oiiiiiiiaa... 66
defmethod file-stream (stream) 66
defmethod path (stream) 66
defmethod stream (stream) 66
generic-print 70
defgeneric (stream)iiiiiiiiiia... 70
defmethod character (character) 40
defmethod cons (list)coiiiiiiiiiiit., 60
defmethod double-float (double-float) 50
defmethod fpi (fpi) 54
defmethod keyword (keyword) 57
defmethod null (list)oo..... 58
defmethod string (string) 73
defmethod symbol (symbol)c..o... 74
defmethod vector (vector) 76
generic-read i 68
defgeneric (stream)l 68
defmethod buffered-stream (stream) 69
defmethod file-stream (stream) 69
defmethod stream (stream) 69

104

Version 0.991

generic-write 69
defgeneric (stream)iiiiiiiiiiiiia... 69
defmethod buffered-stream (stream) 69
defmethod character (character) 40
defmethod cons (list)l 60
defmethod double-float (double-float) 51
defmethod file-stream (stream) 69
defmethod fpi (fpi) ..o 54
defmethod keyword (keyword)57
defmethod null (list)coo.... 58
defmethod stream (stream) 69
defmethod string (string) 73
defmethod symbol (symbol)coooi... 74
defmethod vector (vector) 76

initialize 20
defgeneric (telos0)l 20
defmethod class (level-1)c.ooiiiiia.n. 84
defmethod condition (condition) 32
defmethod generic-function (level-1) 86
defmethod method (level-1) 86
defmethod object (telos0) 20
defmethod slot (level-1) 85

Key—SeqQUENCE ...ttt 43
defgeneric (collection)coooiiiiiii.. 43

LaSt 43
defgeneric (collection) 43

1O o 61
defgeneric (mathlib)l 61

0G0 61
defgeneric (mathlib)o 61

1= o Y 43
defgeneric (collection) 43

member 43
defgeneric (collection)coveiiiiiii.. 43

negate 63
defgeneric (number) il 63

PO ottt s 61
defgeneric (mathlib) 61

TECOMMECT ..\ttt i 66
defgeneric (stream)o.iiiiiiiiiin... 66
defmethod stream (stream) 66

TEIMOVE ..ttt ittt ittt e ettt 44
defgeneric (collection)coviiiiiiiii.. 44

TOVETSE ottt ettt ettt e s 44
defgeneric (collection)c.oooiiiii.. 44

TOUNA ... 52
defgeneric (float) il 52

SEQUENCET oot 44
defgeneric (collection)coviiiiiiiii.. 44

SHALLOW=COPY «vvvttt ettt 49
defgeneric (COPY) - «.vnvnrnriiniiiiiee e, 49
defmethod class (COPY) - cvvnrverninanninannnnannnn. 49
defmethod cons (list) 59
defmethod object (COPY) «.vvvrvnininininininenennn.. 49
defmethod string (string) 73
defmethod vector (vector) 76

S ATl L 61
defgeneric (mathlib) 61

sinh ... 61
defgeneric (mathlib) 61

SiZe L. 44
defgeneric (collection)coi. 44

S1ACe 44
defgeneric (collection)c.coviiiiiiia.. 44

=T o 44
defgeneric (collection)coiiiii.. 44

STt 61
defgeneric (mathlib) 61

TAN L 61
defgeneric (mathlib)l 61

tanh ... 61

Version 0.991

defgeneric (mathlib)
truncate

defgeneric (thread)c.coiiiiiiiiiia..
defmethod thread (thread)
2T 0T
defgeneric (number)

Programming Language EuLisp:2010(E)

105

Programming Language EuLisp:2010(E)

Condition Index

<cannot-update-setter> (level-0) 23
a-condition (undefined-module) 6
arithmetic-condition (number) 62
cannot-update-setter (level-0) 24
collection-condition (collection) 40, 42
conversion-condition (collection) 45
conversion-condition (convert) 48
division-by-zero (number) 62, 64
domain-condition (condition)oo....032
domain-condition (mathlib) 60, 61
dynamic-multiply-defined (dynamic) 96
end-of-stream (stream)l 68, 70
environment-condition (condition)32
general-condition (condition) 32
generic-function-condition (condition) 33
incompatible-method-and-gf (level-1) 94
incompatible-method-domain (condition) 33
incompatible-method-domain (telosO) 18
invalid-operator (level-0), 23
method-domain-clash (condition)33
method-domain-clash (level-1) 94
method-domain-clash (telosQ) 18
no-applicable-method (condition) 33
no-applicable-method (convert) 48
no-applicable-method (telosQ) 18
no-converter (CONVETt)couveiiuaeninann.. 48
no-next-method (condition)l 33
no-next-method (telos0)l 19
no-setter (level-0) 23, 24
non-congruent-lambda-lists (condition) 33
non-congruent-lambda-lists (level-1) 79
non-congruent-lambda-lists (telos0) 18
range-condition (condition)ol 032
range-condition (mathlib) oL 61
read-error (Stream)oeiiiiiiiiiiiiiiininn. 68
scan-mismatch (formatted-io) 52
thread-already-started (thread)37,38
thread-condition (thread) 37
unbound-dynamic-variable (dynamic)¢ 5
wrong-condition-class (condition) 32, 34
wrong-thread-continuation (level-0) 36
wrong-thread-continuation (thread) 38

106

Version 0.991

Version 0.991

Constant Index

a-constant (undefined-module) 6
else (level-0)t 24
least-negative-double-float (double-float)50
least-positive-double-float (double-float) 50
maximum-vector-index (vector) 76
most-negative-double-float (double-float) 50
most-negative-int (fpi)o...054
most-positive-double-float (double-float) 50
most-positive-int (fpi)054
pi (mathlib) ... o 60
t (level-0) .o 21
ticks-per-second (thread)cooiiiiiii.., 37

Programming Language EuLisp:2010(E)

107

Programming Language EuLisp:2010(E)

Index
PP 21
() e 58
e 62
b 62
s e e e e e e e e e e 28
P 62
2P 62
L 47
2 PPt 47
P 47
> e 47
e 47
/2 63
e 28
Ka=Class> .. 6
a-constant ... 6
a-function 5
function signature i 5
A=GeNETIC ...ttt 5, 6
a-special-form i 5
syntax table 5
ADS 63
abstract class 7
absStract—clasST?t 17
function signature i i 17
ADSEraCt? . 17
BCCESSOT .ttt ittt et e e 17
accumMulate ... 40
accumulatel ... 41
BCOS i 50, 60
add-method i il 93, 94
AL LT 41
allocate ... 19, 85, 85
ANA . 25
rewrite rules 25
syntax table 25
AN Y T 41
applicable method 7
AP LY 23
syntax table 23
apply-method i 81
AS=LOWETCASE . .vttttttttee et eeeiiiii e 39, 39, 73
ASTUPPETCASE .ttt tttte ettt 40, 40, 73
ASAIL Lt 50, 60
ASSIENIMENT ... e 23
BT L 50, 60
ATAN2 . 50, 60
ALOMT 59
backquoting 27
DaSE . 55
arbitrary base literalsl 55
limitation on input i 55
binary literals 55
DINary* ... 50, 54, 64
binary+ ... 50, 54, 63
Dinary = . 50, 54, 64
binary-gedt 54, 64
PINAry=1Cm . ..ottt 54, 64
binary-mod ...l 50, 54, 64
binary/ ... 50, 54, 64
binary< 39, 47, 50, 54, 73
binary= 39, 46, 46, 50, 54, 59, 63, 72, 76
DINATYA oottt 54, 64
bInding 7
dynamically scoped i 2
module ... 22
of module names i 11
of module names i 12

108

Version 0.991

top dynamiciiiiii 96
DLOCK oo 25
rewrite rules 26
see alSo 1et/CC vt 26
syntax table 26
boolean i 10, 11
boolean
syntax table i 11
<buffered-stream>c..iiiiiiiiiiiiiii 65
call-methodcouuiiiiii i 80
call-next-handlerc..iiiiiiiiiiiiiiia. 34
syntax table i 34
call-next-method it 19
function signature oo 19
L= 59
case sensitivity i 9
CatCh e 96
rewrite rules 96
syntax table i 96
CAT ot e 59
celling ... 50, 51
o= e PP 35
character 38
character-extension glyph 38
minimal character set 9
module 38
<character> e e 39
Character ... 38
syntax table i 39
character set i 9
<character-sequence>oiiiiiiiiiiiiiannn. 40
character-set
syntax table 9
Character? ... e 39
Common Lisp.....coooiiiiiii i vi, 2
Class .. 2,7
primitive ... 2
self-instantiated i i 8
ol - 1= D 15
CLaS S .ttt e 78
class Option ... 7
class precedence list i 7
class—keywords ... 82
CLASS™MAME ...ttt tttt ittt et ettt e 82
ClasS=—0f ... 81
class-precedence-list il 82
ClassS=SL1oTS ...ttt 82
Clear—table ... 75
CLOS i 2
CloSUTE . oo 7
10 T<) a1 0 U P 62
collection 40
alignment 40
module ... 40
KCOLLECTIOND L\ttt ittt e 40
collection-condition i i i i 43
COLLECEIONT e 41
comment
syntax table 10
COMINENTES ..ottt e e 9
e .o 9
10 0 <7 9
Common Lisp Error Systemcoou.. 31
(6703 401 =1 46
module 46
compatible-superclass?iinn 86, 86, 87
compatible-superclasses?iiinaan. 86, 86
compliance 4

Version 0.991

compute-and-ensure-slot-accessors 90, 90
compute-class-precedence-list 87, 87
compute-constructoro, 85, 85
compute-defined-slotl 88, 89
compute-defined-slot-class 89, 89
compute-discriminating-function 93, 93
compute-inherited-keywords 88, 88
compute-inherited-slots 88, 88
compute-keywords i 88, 88
compute-method-lookup-function 93, 93
compute-predicate i 84, 84
compute-primitive-reader-using-class 92, 92, 93
compute-primitive-reader-using-slot 92, 92
compute-primitive-writer-using-class 92
compute-primitive-writer-using-slot 92, 92
compute-slot-reader i 90, 90
compute-slot-writer 91, 91
compute-slots il 87, 87
compute-specialized-slotl 89, 89
compute-specialized-slot-class 89, 90
concatenate 41
CONCUITEIICY .+t e ettttete ettt ettt ettt 35
[T 24
rewrite rules 24
syntax table 24
condition 31
continuable i 31
module 3D
non-continuable ool 31
<conditiomn> ... 32
condition? 32
configuration i 4
CONfOIMANCEttt 4
level-0 ... 4
level-1 .. 4
conforming processoriiiiiiiiiiiiiii.. 4
conforming program i 4
conformity clause i 4
conformity-clause
least negative double precision float 50
least positive double precision float 50
maximum vector indexol 76
most negative double precision float 50
most negative fixed precision integer 54
most positive double precision float 50
most positive fixed precision integer 54
CONEGIUENT ...ttt e 7
[T e3¢+ =T o3 66
KCOMSD ottt ettt et e 58
Lo+ = 59
[T} o - S 59
constant
a-constant ... 6
defined 21
ElSe . 24
least-negative-double-float 50
least-positive-double-float 50
literal ... 21
maximum-vector-indexo i 76
most-negative-double-float 50
most-negative-int o .. 04
most-positive-double-floatol 50
most-positive-into 54
03 P 60
PP 21
ticks-per-second ... 37
CONSEANT ..ottt 21, 21
CONSEIUCTOT ..ottt 17
continuation i i i 7, 26, 96
CONVENTIONS ...\ttt e 5
COTVETT vttt ettt et e et e et 48

Programming Language EuLisp:2010(E)

module ... 48
COMVETLT .\ttt e 48
COMVETLOT ...ttt ettt ettt e 48
converter function 7
(converter <double-float>)evveeeennnnn. 54
(converter <fpid>)ciiiiiiiiiiiiii e 50
(converter <LisSt>) ...t 45
(converter <string>) 45, 50, b4, 57, 75
(converter <symbol>)c.eiiiiiiiiiiiiiinnno... 72
(converter <table>)c.c.iiiiiiineenniiiiiinnn 45
(converter <VECLOT>)iiiiiieiniiiiiiiineeanennn. 45
COPY ettt ettt e e 49

module ... 49
Lo o T 50, 61
COSM L 50, 61
current-thread i 36
AEEP=COPY « ettt 49, 49, 59, 73, 76
default ... 8
defaulto 16
default-function 8
defclass ...t 16, 78

syntax table i 16
defclass-1

syntax table 78
defconditionoiiiiiiii e 31

syntax table 31
defconstantiiiiii 21

syntax table 21
def@enericoiiiiiiiii 15, 17, 79

rewrite rules 18

syntax table 17
defgeneric-1

syntax table 79
defglobalo 96

syntax table i 96
defining form 3,7
defining operator 7
defining-0-forms

syntax table 13
deflocal ... 21

syntax table 21
defmethod 18, 80

syntax table i 18
defmethod-1

syntax table 80
defmodule 11, 11
defmodule-0

syntax table i 12
defmodule-1

syntax table 78
defsyntax i 22

syntax table 22
AefUn ..o 22

rewriterules 22

syntax table 22
delete ..t 42
direct INSEANCEonut ettt e 7
direct subclass ... 7
direct superclass 7
AISCOMNECT .« ottt ettt e ettt e ee e 67, 67
QO ot e 42
double-float 50

module ... 50
<double-float> ... e 50
double-float

syntax table 50
double—float? ...t 50
dynamici 95

module ... 95
AYNamic ...t 95

syntax table 95

Programming Language EuLisp:2010(E)

dynamic environment o i 7
dynamic extent 7
AYNamic SCOPEvvttt ettt 7
dynamic-let 95
syntax table 95
dynamic-setq ...l 95
syntax table i 95
lement ... 42
Bl Lt 24
BIMPEY T 42
end-of-stream il 68, 68
ensure-slot-reader, 91, 91
ensure-slot-writerol 91, 91
environmental error i 4
B0 e 46
implementation-defined behaviour 46
eQl 46
EITOT .« ettt ettt et ettt e e et e e 4
can be signalled 4
environmental 4
handler33
signalledo 4
Static ..o 4
violation ... 4
1= o PPN 35
1S5 5) = 4
EULISP
level-0 ... 3
level-1 o 3
HDrariesoeeriii 3
BVEIT oot 54, 55
1= 7= < v 12
eXIt- o e 96
module ... 96
1= o T 50, 61
@XPOTL .o iii, 12
@XPOSE ittt iii, 13
EXTEINSION ..ttt t ettt 4
extent ... 7
external representation
] 58
external representation
floating point i 51
INbEET oo 55
null (empty list) ... 58
DAL 58
SEFING ..o 72
VECEOT ..o 76
external representation (see also prin and write) 21
falSE . 5, 10
<file-stream> ...ttt 65
file-stream-buffer-position 65
file-stream-filenameottty 65
file-stream—modeiiiiiiiiiiii 65
file-stream? ... 65
0 PPt 42
fill-buffer ... 67, 67
find-key ... 43
first o 43
Airst-class ... 7
<fixed-buffered-stream> 65
Hoat ..o 51
module ... 51
KELoat> .o 51
float ... 51
syntax table 51
Float Tl e 51
F100T o 50, 52
flush . 71
flush-buffer 67, 68
i 1 53

110

formatted-io

from-stream

standard function

function call
function signatures

abstract-class?
call-next-methodt 19
next-method?
function-call
syntax table
<function-class>

generic function

rewrite rules
generic-1-lambda

syntax table
generic-connect
<generic-function>
generic-function-discriminating-function 83
generic-function-domain
generic-function-method-class
generic-function-method-lookup-function
generic-function-methods
generic-lambda

syntax table
generic-print
generic-read
generic-write

<hash-table>
hexadecimal literals

definition of
peculiar identifiers

syntax table

syntax table
implementation-defined
behaviour of eq
least negative double precision float
least positive double precision float
maximum vector index
module directives
most negative double precision float
most negative fixed precision integer
most positive double precision float
most positive fixed precision integer
time units per second

indefinite extent

indirect instance
indirect subclass

inheritance graph

Version 0.991

Version 0.991

inherited slot description o il 8
init-list ..o 8
initialization 19
initializel 20, 20, 32, 84-86
inner dynamico 8
inner lexical 8
INSEANCE ... e 8
direct ... 7
indirect ... 8
instantiation graph i 8
T ¢ i 54
INtEEET ... 55
module ... 55
<Integer> 55
Integer ... 55
syntax table 55
integer? 55
InterLISP ..ot vi, 2
KeY—SEQUENCEttt 43
keyword 8, 56
abstract? ... 17
ACCESSOT . ittt ettt e et et 17
ClasS o 78
constructor 17
default ... 16
definition of 56
EXCEPE ettt 12
EXPOTE .« ottt iii, 12
EXPOSE e ettt iii, 13
IMpOort ... iii, 12
keyword ... 16
keywords ... 17
method 17
module ... 56
ONLy 12
predicate ... 17
TEAAET .ttt 16
TENAIIE ettt ettt et ettt e 12
requIred? ... 17
SYNbaxX ... iii, 13
WIIHET Lo 16
KREYWOTd> ..ottt 56
keyword ... 16, 56
syntax table 56
keyword-exists? 57
keyword-name ... 56
keyword? ... 56
keywords 17
1ambda ... 21
syntax table 22
language structureo i 3
LA 43
O 63
least-negative-double-float 50
least-positive-double-float 50
Lelisp oo 11
LE-LISP .\ttt et e e vi, 2
Lt 26
rewrite rules 26
syntax table 26
Ltk 27
rewrite rules 27
syntax table 27
Lt/ CC o 25
see also block and return-from 25
syntax table 25
Tetfuns ... 26
syntax table 26
level-0 ..o 3,21
lexical environment i i 8
lexical SCOPE .. ovviii ittt e 8

Programming Language EuLisp:2010(E)

lexical syntax 9
Lispin ..o 67
LISP/VM o e vi, 2
3 58
module 58
LAt oot 58
= PP 59
syntax table 58
Literal ... 21
arbitrary base i 55
binary ... 55
character i 38
hexadecimal i 55
modification of 21
OCtal L. 55
QUOLALION .. vt 21
10Cal=SLOt> .ottt e 82
LOCK 38
module 38
KLOCRD ottt 38
0Lttt e e e 38
LOCR T o e 38
10 50, 61
10810 50, 61
AR o ottt et e e e e e 19
1= o O P 43
mathlib ... 60
module 60
11T PP 47
maximum-vector-indexi.iiiiiiiii i 76
MO 2
1<) 111 o= PP 43
MEtACIASS .« .. 8
<MetaClassS> ...t 82
method 8
applicable 7
bindingsc.. 18
specificity ... 8
<method> ... 84
MEEHOA ..ttt e 17
method function 8
method specificity 8
method-domainttt 84
method-function i 84
method-function-lambdacoiiiiiiiiiiinnnnnn.. 80
method-generic-function 84
method-lambdacouuiiiniiii 80
syntax table 80
MiICTOCEYX vttt et e 2
1T PP 47
1o Yo PN 63
module 2,11
AITeCtiVES ottt e 12
ENVITONMENSttt 2
EXCEPE L 12
E@XPOTE L. 12
EXPOSE Lttt 13
IMPOTE oottt 12
name bindings i 11, 12
ONL LY o 12
TENAME .t ettt e ettt e et e e e 12
SYNTAX ..o 13
modules
level-0 ... e 3
most-negative-double-float 50
most-negative-int il 54
most-positive-double-float 50
most-positive-intl 54
multi-method 8
multiple inheritance il 78
multiple inheritance i 19

Programming Language EuLisp:2010(E)

KIAMED ottt e ettt e e 20
negate ... 50, 54, 63
negative? ... 63
NEW INSTANCE ..ottt e 8
next-method? 19
function signature oL 19
normativeReferences il 3
null 58
<RULL> Lo 58
NULL Y 58
NUIMDET .« .ottt et e e e 62
[0 7<) 4 ¢) o P 62
module ... 62
SOUMDET> ...t 62
NUMDET? e 62
OQaKklisSp . .vv i 2
object ... 19
SYIEAX .+ oottt 7
Syntax-1 ... 97
<object> 15
object
syntax table 10
0D JECES it 10
OB VLASD + vttt e 2
octal literals i 55
0dd T e 56
OD LY ot 12
open-input-file i 71
open-output-file ... 71
Lo P 25
rewrite rules 25
syntax table 25
S22 P 58
PRIT 58
Pa e 60
positive? ... 63
PO o 50, 61
predicate 17
primitive-allocateiiiiiiiiiiiiii 94
primitive-class—ofl 94
primitive-ref 94
pPrin-char 71
Print . 70
processing
constants 21
Symbols ... 21
PLOCESSOT ..ttt ettt ettt e e e e e e e e 4
processor-defined
GENSYM NAINES e v vttt e e e et 74
PLOBIL ittt ittt 27
syntax table i 27
quasiquotation i i 27
qUasiquUOte ... 27
abbreviation with ¢ L 28
syntax table 27
QUOLE 21
abbreviation with > 21
syntax table 21
range-condition i i 61
Tead ...ttt 68
read-line ...ttt 70
TEAART ..ttt ettt 16
TECOMMECE .ttt ittt 66, 66
reflective ... 8
TEOMOVE .« ettt ettt ettt ettt ettt 44
TENAME ..ottt ettt 12
required? ... 17
return—-from 26
rewrite rules 26
see also 1et/cc ..viii i 26
syntax table 26

112

Version 0.991

B 2= of =T =T 44
rewrite rules
ANA . 25
DloCK .. 26
catCh . 96
COTA ittt ettt 24
defgeneric i 18
defun ... 22
generic function oo oo 18
1 26
Ltk et e 27
L ittt 25
return—-froml 26
BRTOW Lo 96
UNLESS oot 25
WheM 24
TOUNA ..ottt 50, 52
SCAIL .« vttt ettt e 52
SCOPE ettt et e ettt e e 8
scope and extent
of lambda bindings i 22
scope and extent
in letfuns eXpPressionsooeeiiiiiiinnnneaan 26
of let/ccbindingcoooiiiiiiiiiiiiiii.. 25
of dynamic-let bindingso 96
self-instantiated class il 8
KSEQUENCED L\ttt t ittt ettt 40
SEQUENCET ot 44
SO oo 23
syntax table i 23
ST LT Lo 23
setter function i 8
(Setter Car)o.uiiiii e e 59
(setter CAT) ...ttt 59
(setter converter)coiuiiiiiii i 48
(setter element)ouuiiiniieiniiieiiiianiiean 42
(setter method-function)cccvvveen... 84
(setter primitive-class-of) 94
(setter primitive-ref)iiiiiiiiiiiiiia 95
SELUSH .ottt 70
Sformat i 52
ShalloWw=COPYovviuiiiiiiieiieeinnn.. 49, 49, 59, 73, 76
signal ... 33
SIGNUM ... 63
simple function i 8
<simple-class>t 82
<simple-function> il 17
<simple-generic-function> 17
<simple-method> i 84
<simple-thread> i il 38
SIn L 50, 61
single inheritance i 15
SInh L. 50, 61
SiZE 44
SLACE 44
SlOt o 9
KB LOt D oo 82
slot descriptionc.oiiii i 9
Slot OpLION . 9
slot specificationc.oiiiiiiiii 9
slot-default-function i il 83
SLOE=MAME ...ttt 82
slot-slot-readeroiuuiiiiiiiiiniii i 83
slot-slot-writer il 83
=T 44
special form 3,9
special operator i 9
special-0-forms
syntax table 14
specialize 9
specialize ONoiiiii i 9

Version 0.991

sprin-char 71
SPTANT ... 70
ST 50, 61
STCAA .ottt e 71
Standard ML ... 11
Standard ML vi, 31
standard module 03
StatiC ITOT ...t e 4
STAT T oot 67
STAIN . 67
STAOUL .« oottt 67
SETEAIN ..o e 65

module 65
KSTTEAMD .ottt ettt 65
stream-buffer 65
stream-buffer-size i, 65
Stream—10CK ...t 65
Stream—sink ... 65
STTEAM=SOUTCE . ..ottttitiite ettt 65
ST AT .ttt 65
SEHIng ... 72

escaping in 72

module 72

string-escape glyph ... 72
SSETLANED oot 39, 72
string ... 72

syntax table 72
<STring-stream> ...ttt 65
string-stream? 65
String? ... 72
SUDCLASS ..ot 9

AITECE e 7

indirecto i 8
SUPEICIASS .« .ttt ittt 9

direct 7
=3 I 1 P 69
symbol ... 74

module 74
<SYMDOL> Lo 74
SYMDOL 21, 21, 74

syntax table 74
symbol-exists? 74
symbol-nameii 74
STMDOL T e 74
SYIEAX .« vttt e 14, 77

generic function lambda-list 17
SYNEAX ... iii, 13
syntax operator i e 22
SyNtax eXPAnSION ..ttt 14
syntax operator 8, 14

definition by defsyntaxl 22
syntax-1 ... 97
AP vi, 2
B 21
table ... 75

module 75
KEADL > 75
table T 75
DAL ot 50, 61
TANK Lo 50, 61
BElOSO .. 15

module 15
thread 36

module i 36
KERread> ... 36
thread-rescheduleiiiiiiiiiiiiinnnnn... 36
thread-start ...t 36
thread-valueoiiiniiiiiiiii i 37
thread? i 36
PR OW . 96

rewrite rules 96

Programming Language EuLisp:2010(E)

syntax table 96
tickS—Per—-secondiiiiiiiiii e 37
to-Stream 65
top dynamico i 9
top lexical ... 9
BTUe oo 5, 10
truncate ... 50, 52
UNLESS ottt ittt et 24

rewrite rules 25

syntax table 24
UNLOCK ..t 38
UNQUOTE ettt ettt ettt 28

abbreviation with , 28

syntax table 28
unquote-splicingl 28

syntax table 28
unwind-protectl 27

syntax table 27
VECHOT .ttt 76

module ... 76
VLT OT D Lottt ettt et e 76
VECEOL .ttt 76

syntax table 76
VECEOL ? 76
VIOLATION ottt 4
WALE et 37, 37
WHEI Lo 24

rewrite rules 24

syntax table 24
WhitesSpacettt e 9
with-handler it 34

syntax table i 34
with-input-filel 71

syntax table i 71
with-output-filel 71

syntax table i 71
with-sink 71

syntax table i 71
With=S0UrcCe ...ttt e 71

syntax table o 71
WAL oot 70
WEiter ... 16
ZEYOT ... D0, 54,63

113

	Contents
	Foreword
	Introduction
	1 Language Structure
	2 Scope
	3 Normative References
	4 Conformance Definitions
	5 Error Definitions
	6 Compliance
	7 Conventions
	7.1 Layout and Typography

	7.1.1 a-special-form
	7.1.1.1 -Syntax
	7.1.2 a-function
	7.1.2.1 -Signature
	7.1.3 a-generic
	7.1.4 a-generic <class-a>
	7.1.5 <a-condition>
	7.1.6 <a-class>
	7.1.7 a-constant [class:a-class]<a-class>
	7.2 Naming

	7.1 ``<name>'' wrapping:
	7.2 ``binary'' prefix:
	7.3 ``-class'' suffix:
	7.4 ``generic-'' prefix:
	7.5 hyphenation:
	7.6 ``make-'' prefix:
	7.7 ``!'' suffix:
	7.8 ``?'' suffix:
	8 Definitions
	9 Lexical Syntax
	9.1 Character Set

	9.1.0.1 -Syntax
	9.2 Whitespace and Comments

	9.2.0.2 -Syntax
	9.3 Identifiers

	9.3.0.3 -Syntax
	9.4 Objects

	9.4.0.4 -Syntax
	9.5 Boolean

	9.5.0.5 -Syntax
	10 Modules
	10.1 Module Definition

	10.1.1 defmodule
	10.1.1.1 -Syntax
	10.2 Directives
	10.2.1 exportexport@export|hyperemkeyword!export Directive
	10.2.2 importimport@import|hyperemkeyword!import Directive
	10.2.3 exposeexpose@expose|hyperemkeyword!expose Directive
	10.2.4 syntaxsyntax@syntax|hyperemkeyword!syntax Directive

	10.3 Definitions and Expressions
	10.4 Special Forms
	10.5 Module Processing

	11 Objects
	11.1 System Defined Classes

	11.1.1 <object>
	11.1.2 <class>
	11.2 Single Inheritance
	11.3 Defining Classes

	11.3.1 defclass
	11.3.1.1 -Syntax
	11.3.2 abstract-class?
	11.3.2.1 -Signature
	11.4 Defining Generic Functions and Methods

	11.4.1 <function>
	11.4.2 <simple-function>
	11.4.3 <generic-function>
	11.4.4 <simple-generic-function>
	11.4.5 defgeneric
	11.4.5.1 -Syntax
	11.4.5.2 -Rewrite Rules
	11.4.6 defmethod
	11.4.6.1 -Syntax
	11.4.7 generic-lambda
	11.4.7.1 -Syntax
	11.5 Specializing Methods

	11.5.1 call-next-method
	11.5.1.1 -Signature
	11.5.2 next-method?
	11.5.2.1 -Signature
	11.6 Method Lookup and Generic Dispatch
	11.7 Creating and Initializing Objects

	11.7.1 make
	11.7.2 allocate
	11.7.3 initialize
	11.7.4 initialize <object>
	11.8 Accessing Slots
	11.9 Other Abstract Classes

	11.9.1 <name>
	12 Level-0 Defining, Special and Function-call Forms
	12.1 Simple Expressions

	12.1.1 constant
	12.1.2 defconstant
	12.1.2.1 -Syntax
	12.1.3 t [class:symbol]<symbol>
	12.1.4 symbol
	12.1.5 deflocal
	12.1.5.1 -Syntax
	12.1.6 quote
	12.1.6.1 -Syntax
	12.1.7 '
	12.2 Functions: creation, definition and application

	12.2.1 lambda
	12.2.1.1 -Syntax
	12.2.2 defsyntax
	12.2.2.1 -Syntax
	12.2.3 defun
	12.2.3.1 -Syntax
	12.2.3.2 -Rewrite Rules
	12.2.4 function call
	12.2.4.1 -Syntax
	12.2.5 <invalid-operator>
	12.2.6 apply
	12.2.6.1 -Syntax
	12.3 Destructive Operations

	12.3.1 setq
	12.3.1.1 -Syntax
	12.3.2 setter
	12.3.3 <no-setter>
	12.3.4 <cannot-update-setter>
	12.4 Conditional Expressions

	12.4.1 if
	12.4.1.1 -Syntax
	12.4.2 cond
	12.4.2.1 -Syntax
	12.4.2.2 -Rewrite Rules
	12.4.3 else [class:symbol]<symbol>
	12.4.4 when
	12.4.4.1 -Syntax
	12.4.4.2 -Rewrite Rules
	12.4.5 unless
	12.4.5.1 -Syntax
	12.4.5.2 -Rewrite Rules
	12.4.6 and
	12.4.6.1 -Syntax
	12.4.6.2 -Rewrite Rules
	12.4.7 or
	12.4.7.1 -Syntax
	12.4.7.2 -Rewrite Rules
	12.5 Variable Binding and Sequences

	12.5.1 let/cc
	12.5.1.1 -Syntax
	12.5.2 block
	12.5.2.1 -Syntax
	12.5.2.2 -Rewrite Rules
	12.5.3 return-from
	12.5.3.1 -Syntax
	12.5.3.2 -Rewrite Rules
	12.5.4 letfuns
	12.5.4.1 -Syntax
	12.5.5 let
	12.5.5.1 -Syntax
	12.5.5.2 -Rewrite Rules
	12.5.6 let*
	12.5.6.1 -Syntax
	12.5.6.2 -Rewrite Rules
	12.5.7 progn
	12.5.7.1 -Syntax
	12.5.8 unwind-protect
	12.5.8.1 -Syntax
	12.6 Quasiquotation Expressions

	12.6.1 quasiquote
	12.6.1.1 -Syntax
	12.6.2 `
	12.6.3 unquote
	12.6.3.1 -Syntax
	12.6.4 ,
	12.6.5 unquote-splicing
	12.6.5.1 -Syntax
	12.6.6 ,@
	12.7 Summary of Level-0 Defining, Special and Function-call Forms
	12.7.1 Syntax of Level-0 modules
	12.7.2 Syntax of Level-0 defining forms
	12.7.3 Syntax of Level-0 special forms
	12.7.4 Syntax of Level-0 function calls

	12.8 Conditions

	13 Condition Classes

	13.0.1 defcondition
	13.0.1.1 -Syntax
	13.0.2 <condition>
	13.0.3 condition?
	13.0.4 initialize <condition>
	13.0.5 <general-condition>
	13.0.6 <domain-condition>
	13.0.7 <range-condition>
	13.0.8 <environment-condition>
	13.0.9 <wrong-condition-class>
	13.0.10 <generic-function-condition>
	13.0.11 <no-applicable-method>
	13.0.12 <incompatible-method-domain>
	13.0.13 <non-congruent-lambda-lists>
	13.0.14 <method-domain-clash>
	13.0.15 <no-next-method>
	14 Condition Signalling and Handling

	14.0.16 signal
	14.0.17 call-next-handler
	14.0.17.1 -Syntax
	14.0.18 with-handler
	14.0.18.1 -Syntax
	14.0.19 error
	14.0.20 cerror
	15 Concurrency
	15.1 Threads

	15.1.1 <thread>
	15.1.2 thread?
	15.1.3 thread-reschedule
	15.1.4 current-thread
	15.1.5 thread-start
	15.1.6 thread-value
	15.1.7 wait
	15.1.8 wait <thread>
	15.1.9 ticks-per-second [class:double-float]<double-float>
	15.1.10 <thread-condition>
	15.1.11 <wrong-thread-continuation>
	15.1.12 <thread-already-started>
	15.2 Locks

	15.2.1 <lock>
	15.2.2 lock?
	15.2.3 lock
	15.2.4 unlock
	15.2.5 <simple-thread>
	16 Level-0 Module Library
	16.1 Characters

	16.1.1 character
	16.1.1.1 -Syntax
	16.1.2 <character>
	16.1.3 character?
	16.1.4 binary= <character>
	16.1.5 binary< <character>
	16.1.6 <string>
	16.1.7 as-lowercase
	16.1.8 as-lowercase <character>
	16.1.9 as-uppercase
	16.1.10 as-uppercase <character>
	16.1.11 generic-print <character>
	16.1.12 generic-write <character>
	16.2 Collections

	16.2.1 <collection>
	16.2.2 <sequence>
	16.2.3 <character-sequence>
	16.2.4 <collection-condition>
	16.2.5 accumulate
	16.2.6 accumulate1
	16.2.7 all?
	16.2.8 any?
	16.2.9 collection?
	16.2.10 concatenate
	16.2.11 delete
	16.2.12 do
	16.2.13 element
	16.2.14 (setter element)
	16.2.15 empty?
	16.2.16 fill
	16.2.17 find-key
	16.2.18 first
	16.2.19 last
	16.2.20 key-sequence
	16.2.21 map
	16.2.22 member
	16.2.23 remove
	16.2.24 reverse
	16.2.25 reverse!
	16.2.26 sequence?
	16.2.27 size
	16.2.28 slice
	16.2.29 sort
	16.2.30 sort!
	16.2.31 (converter <list>)
	16.2.32 (converter <string>)
	16.2.33 (converter <table>)
	16.2.34 (converter <vector>)
	16.3 Comparison

	16.3.1 eq
	16.3.2 eql
	16.3.3 binary=
	16.3.4 binary= <object>
	16.3.5 binary<
	16.3.6 =
	16.3.7 !=
	16.3.8 <
	16.3.9 >
	16.3.10 <=
	16.3.11 >=
	16.3.12 max
	16.3.13 min
	16.4 Conversion

	16.4.1 convert
	16.4.2 <conversion-condition>
	16.4.3 <no-converter>
	16.4.4 converter
	16.4.5 (setter converter)
	16.5 Copying

	16.5.1 deep-copy
	16.5.2 deep-copy <object>
	16.5.3 deep-copy <class>
	16.5.4 shallow-copy
	16.5.5 shallow-copy <object>
	16.5.6 shallow-copy <class>
	16.6 Double Precision Floats

	16.6.1 <double-float>
	16.6.2 double-float?
	16.6.3 most-positive-double-float [class:double-float]<double-float>
	16.6.4 least-positive-double-float [class:double-float]<double-float>
	16.6.5 least-negative-double-float [class:double-float]<double-float>
	16.6.6 most-negative-double-float [class:double-float]<double-float>
	16.6.7 (converter <string>)
	16.6.8 (converter <fpi>)
	16.6.9 generic-print <double-float>
	16.6.10 generic-write <double-float>
	16.7 Floating Point Numbers

	16.7.1 float
	16.7.1.1 -Syntax
	16.7.2 <float>
	16.7.3 float?
	16.7.4 ceiling
	16.7.5 floor
	16.7.6 round
	16.7.7 truncate
	16.8 Formatted-IO

	16.8.1 scan
	16.8.2 <scan-mismatch>
	16.8.3 sformat
	16.8.4 format
	16.8.5 fmt
	16.9 Fixed Precision Integers

	16.9.1 <fpi>
	16.9.2 int?
	16.9.3 most-positive-int [class:fpi]<fpi>
	16.9.4 most-negative-int [class:fpi]<fpi>
	16.9.5 (converter <string>)
	16.9.6 (converter <double-float>)
	16.9.7 generic-print <fpi>
	16.9.8 generic-write <fpi>
	16.10 Integers

	16.10.1 integer
	16.10.1.1 -Syntax
	16.10.2 <integer>
	16.10.3 integer?
	16.10.4 even?
	16.10.5 odd?
	16.11 Keywords

	16.11.1 keyword
	16.11.1.1 -Syntax
	16.11.2 <keyword>
	16.11.3 keyword?
	16.11.4 keyword-name
	16.11.5 keyword-exists?
	16.11.6 generic-print <keyword>
	16.11.7 generic-write <keyword>
	16.11.8 (converter <string>)
	16.12 Lists

	16.12.1 <list>
	16.12.2 ()
	16.12.3 <null>
	16.12.4 null?
	16.12.5 generic-print <null>
	16.12.6 generic-write <null>
	16.12.7 pair
	16.12.7.1 -Syntax
	16.12.8 <cons>
	16.12.9 cons?
	16.12.10 atom?
	16.12.11 cons
	16.12.12 car
	16.12.13 cdr
	16.12.14 (setter car)
	16.12.15 (setter cdr)
	16.12.16 binary= <cons>
	16.12.17 deep-copy <cons>
	16.12.18 shallow-copy <cons>
	16.12.19 list
	16.12.20 generic-print <cons>
	16.12.21 generic-write <cons>
	16.13 Elementary Functions

	16.13.1 pi [class:double-float]<double-float>
	16.13.2 acos
	16.13.3 asin
	16.13.4 atan
	16.13.5 atan2
	16.13.6 cos
	16.13.7 sin
	16.13.8 tan
	16.13.9 cosh
	16.13.10 sinh
	16.13.11 tanh
	16.13.12 exp
	16.13.13 log
	16.13.14 log10
	16.13.15 pow
	16.13.16 sqrt
	16.14 Numbers

	16.14.1 <number>
	16.14.2 number?
	16.14.3 <arithmetic-condition>
	16.14.4 <division-by-zero>
	16.14.5 +
	16.14.6 -
	16.14.7 *
	16.14.8 /
	16.14.9 %
	16.14.10 mod
	16.14.11 gcd
	16.14.12 lcm
	16.14.13 abs
	16.14.14 zero?
	16.14.15 negate
	16.14.16 signum
	16.14.17 positive?
	16.14.18 negative?
	16.14.19 binary= <number>
	16.14.20 binary+
	16.14.21 binary-
	16.14.22 binary*
	16.14.23 binary/
	16.14.24 binary%
	16.14.25 binary-mod
	16.14.26 binary-gcd
	16.14.27 binary-lcm
	16.15 Streams
	16.15.1 Stream classes

	16.15.1 <stream>
	16.15.2 stream?
	16.15.3 from-stream
	16.15.4 to-stream
	16.15.5 <buffered-stream>
	16.15.6 <fixed-buffered-stream>
	16.15.7 <file-stream>
	16.15.8 file-stream?
	16.15.9 <string-stream>
	16.15.10 string-stream?
	16.15.2 Stream operators

	16.15.11 connect
	16.15.12 generic-connect
	16.15.13 generic-connect <stream>
	16.15.14 generic-connect <path>
	16.15.15 generic-connect <file-stream>
	16.15.16 reconnect
	16.15.17 reconnect <stream>
	16.15.18 disconnect
	16.15.19 disconnect <stream>
	16.15.20 disconnect <file-stream>
	16.15.3 Stream objects

	16.15.21 stdin [class:file-stream]<file-stream>
	16.15.22 lispin [class:stream]<stream>
	16.15.23 stdout [class:file-stream]<file-stream>
	16.15.24 stderr [class:file-stream]<file-stream>
	16.15.4 Buffer management

	16.15.25 fill-buffer
	16.15.26 fill-buffer <buffered-stream>
	16.15.27 fill-buffer <file-stream>
	16.15.28 flush-buffer
	16.15.29 flush-buffer <buffered-stream>
	16.15.30 flush-buffer <file-stream>
	16.15.31 <end-of-stream>
	16.15.32 end-of-stream
	16.15.33 end-of-stream <buffered-stream>
	16.15.34 end-of-stream <file-stream>
	16.15.5 Reading from streams

	16.15.35 <read-error>
	16.15.36 read
	16.15.37 generic-read
	16.15.38 generic-read <stream>
	16.15.39 generic-read <buffered-stream>
	16.15.40 generic-read <file-stream>
	16.15.6 Writing to streams

	16.15.41 generic-write
	16.15.42 generic-write <stream>
	16.15.43 generic-write <buffered-stream>
	16.15.44 generic-write <file-stream>
	16.15.45 swrite
	16.15.46 write
	16.15.7 Additional functions

	16.15.47 read-line
	16.15.48 generic-print
	16.15.49 sprint
	16.15.50 print
	16.15.51 sflush
	16.15.52 flush
	16.15.53 sprin-char
	16.15.54 prin-char
	16.15.55 sread
	16.15.8 Convenience forms

	16.15.56 open-input-file
	16.15.57 open-output-file
	16.15.58 with-input-file
	16.15.58.1 -Syntax
	16.15.59 with-output-file
	16.15.59.1 -Syntax
	16.15.60 with-source
	16.15.60.1 -Syntax
	16.15.61 with-sink
	16.15.61.1 -Syntax
	16.16 Strings

	16.16.1 string
	16.16.1.1 -Syntax
	16.16.2 <string>
	16.16.3 string?
	16.16.4 (converter <symbol>)
	16.16.5 binary= <string>
	16.16.6 deep-copy <string>
	16.16.7 shallow-copy <string>
	16.16.8 binary< <string>
	16.16.9 as-lowercase <string>
	16.16.10 as-uppercase <string>
	16.16.11 generic-print <string>
	16.16.12 generic-write <string>
	16.17 Symbols

	16.17.1 symbol
	16.17.1.1 -Syntax
	16.17.2 <symbol>
	16.17.3 symbol?
	16.17.4 gensym
	16.17.5 symbol-name
	16.17.6 symbol-exists?
	16.17.7 generic-print <symbol>
	16.17.8 generic-write <symbol>
	16.17.9 (converter <string>)
	16.18 Tables

	16.18.1 <table>
	16.18.2 table?
	16.18.3 clear-table
	16.18.4 <hash-table>
	16.19 Vectors

	16.19.1 vector
	16.19.1.1 -Syntax
	16.19.2 <vector>
	16.19.3 vector?
	16.19.4 maximum-vector-index [class:integer]<integer>
	16.19.5 binary= <vector>
	16.19.6 deep-copy <vector>
	16.19.7 shallow-copy <vector>
	16.19.8 generic-print <vector>
	16.19.9 generic-write <vector>
	16.20 Syntax of Level-0 objects
	17 Programming Language EuLisp, Level-1
	17.1 Modules
	17.2 Classes and Objects

	17.2.1 defclass
	17.2.1.1 -Syntax
	17.3 Generic Functions

	17.3.1 generic-lambda
	17.3.1.1 -Syntax
	17.3.2 defgeneric
	17.3.2.1 -Syntax
	17.4 Methods

	17.4.1 method-lambda
	17.4.1.1 -Syntax
	17.4.2 defmethod
	17.4.2.1 -Syntax
	17.4.3 method-function-lambda
	17.4.4 call-method
	17.4.5 apply-method
	17.5 Object Introspection

	17.5.1 class-of
	17.6 Class Introspection

	17.6.1 <metaclass>
	17.6.2 <simple-class>
	17.6.3 <function-class>
	17.6.4 class-name
	17.6.5 class-precedence-list
	17.6.6 class-slots
	17.6.7 class-keywords
	17.7 Slot Introspection

	17.7.1 <slot>
	17.7.2 <local-slot>
	17.7.3 slot-name
	17.7.4 slot-default-function
	17.7.5 slot-slot-reader
	17.7.6 slot-slot-writer
	17.8 Generic Function Introspection

	17.8.1 generic-function-domain
	17.8.2 generic-function-method-class
	17.8.3 generic-function-methods
	17.8.4 generic-function-method-lookup-function
	17.8.5 generic-function-discriminating-function
	17.9 Method Introspection

	17.9.1 <method>
	17.9.2 <simple-method>
	17.9.3 method-domain
	17.9.4 method-function
	17.9.5 (setter method-function)
	17.9.6 method-generic-function
	17.10 Class Initialization

	17.10.1 initialize <class>
	17.10.2 compute-predicate
	17.10.3 compute-predicate <class>
	17.10.4 compute-constructor
	17.10.5 compute-constructor <class>
	17.10.6 allocate
	17.10.7 allocate <class>
	17.11 Slot Description Initialization

	17.11.1 initialize <slot>
	17.12 Generic Function Initialization

	17.12.1 initialize <generic-function>
	17.13 Method Initialization

	17.13.1 initialize <method>
	17.14 Inheritance Protocol

	17.14.1 compatible-superclasses?
	17.14.2 compatible-superclasses? <class>
	17.14.3 compatible-superclass?
	17.14.4 compatible-superclass? <class>
	17.14.5 compatible-superclass? <class>
	17.14.6 compatible-superclass? <abstract-class>
	17.14.7 compatible-superclass? <abstract-class>
	17.14.8 compute-class-precedence-list
	17.14.9 compute-class-precedence-list <list>
	17.14.10 compute-slots
	17.14.11 compute-slots <class>
	17.14.12 compute-keywords
	17.14.13 compute-keywords <class>
	17.14.14 compute-inherited-slots
	17.14.15 compute-inherited-slots <class>
	17.14.16 compute-inherited-keywords
	17.14.17 compute-inherited-keywords <class>
	17.14.18 compute-defined-slot
	17.14.19 compute-defined-slot <class>
	17.14.20 compute-defined-slot-class
	17.14.21 compute-defined-slot-class <class>
	17.14.22 compute-specialized-slot
	17.14.23 compute-specialized-slot <class>
	17.14.24 compute-specialized-slot-class
	17.14.25 compute-specialized-slot-class <class>
	17.15 Slot Access Protocol

	17.15.1 compute-and-ensure-slot-accessors
	17.15.2 compute-and-ensure-slot-accessors <class>
	17.15.3 compute-slot-reader
	17.15.4 compute-slot-reader <class>
	17.15.5 compute-slot-writer
	17.15.6 compute-slot-writer <class>
	17.15.7 ensure-slot-reader
	17.15.8 ensure-slot-reader <class>
	17.15.9 ensure-slot-writer
	17.15.10 ensure-slot-writer <class>
	17.15.11 compute-primitive-reader-using-slot
	17.15.12 compute-primitive-reader-using-slot <slot>
	17.15.13 compute-primitive-reader-using-class
	17.15.14 compute-primitive-reader-using-class <class>
	17.15.15 compute-primitive-writer-using-slot
	17.15.16 compute-primitive-writer-using-slot <slot>
	17.15.17 compute-primitive-writer-using-class
	17.15.18 compute-primitive-reader-using-class <class>
	17.16 Method Lookup and Generic Dispatch

	17.16.1 compute-method-lookup-function
	17.16.2 compute-method-lookup-function <generic-function>
	17.16.3 compute-discriminating-function
	17.16.4 compute-discriminating-function <generic-function>
	17.16.5 add-method
	17.16.6 add-method <generic-function>
	17.17 Low Level Allocation Primitives

	17.17.1 primitive-allocate
	17.17.2 primitive-class-of
	17.17.3 (setter primitive-class-of)
	17.17.4 primitive-ref
	17.17.5 (setter primitive-ref)
	17.18 Dynamic Binding

	17.18.1 dynamic
	17.18.1.1 -Syntax
	17.18.2 dynamic-setq
	17.18.2.1 -Syntax
	17.18.3 <unbound-dynamic-variable>
	17.18.4 dynamic-let
	17.18.4.1 -Syntax
	17.18.5 defglobal
	17.18.5.1 -Syntax
	17.18.6 <dynamic-multiply-defined>
	17.19 Exit Extensions

	17.19.1 catch
	17.19.1.1 -Syntax
	17.19.1.2 -Rewrite Rules
	17.19.2 throw
	17.19.2.1 -Syntax
	17.19.2.2 -Rewrite Rules
	17.20 Syntax of Level-1 objects
	17.20.1 Syntax of Level-1 modules
	17.20.2 Syntax of Level-1 defining forms
	17.20.3 Syntax of Level-1 special forms

	Bibliography
	Module Index
	Class Index
	Special Forms Index
	Function Index
	Generic Function Index
	Condition Index
	Constant Index
	Index

